-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess_ckpt.py
47 lines (32 loc) · 1.39 KB
/
preprocess_ckpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
# process DDBM checkpoints
state_dict = torch.load("assets/ckpts/e2h_ema_0.9999_420000.pt", map_location="cpu")
module_list = []
for i in range(5, 16):
if i == 8 or i == 12:
continue
module_list.append(f"input_blocks.{i}.1.qkv.weight")
module_list.append(f"input_blocks.{i}.1.proj_out.weight")
module_list.append("middle_block.1.qkv.weight")
module_list.append("middle_block.1.proj_out.weight")
for i in range(0, 12):
module_list.append(f"output_blocks.{i}.1.qkv.weight")
module_list.append(f"output_blocks.{i}.1.proj_out.weight")
for name in module_list:
state_dict[name] = state_dict[name].squeeze(-1)
torch.save(state_dict, "assets/ckpts/e2h_ema_0.9999_420000_adapted.pt")
state_dict = torch.load("assets/ckpts/diode_ema_0.9999_440000.pt", map_location="cpu")
module_list = []
for i in range(10, 18):
if i == 12 or i == 15:
continue
module_list.append(f"input_blocks.{i}.1.qkv.weight")
module_list.append(f"input_blocks.{i}.1.proj_out.weight")
module_list.append("middle_block.1.qkv.weight")
module_list.append("middle_block.1.proj_out.weight")
for i in range(0, 9):
module_list.append(f"output_blocks.{i}.1.qkv.weight")
module_list.append(f"output_blocks.{i}.1.proj_out.weight")
for name in module_list:
state_dict[name] = state_dict[name].squeeze(-1)
torch.save(state_dict, "assets/ckpts/diode_ema_0.9999_440000_adapted.pt")