-
Notifications
You must be signed in to change notification settings - Fork 8
/
run.py
157 lines (144 loc) · 7.95 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import argparse
import random
import numpy as np
import torch
import torch.distributed as dist
from exp.exp_forecast import Exp_Forecast
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Timer-XL')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='forecast', help='task name, options:[forecast]')
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='timer_xl', help='model name, options: [timer_xl, timer, moirai, patchtst]')
parser.add_argument('--seed', type=int, default=2021, help='seed')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTh1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./dataset/ETT-small/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--test_flag', type=str, default='T', help='test domain')
# forecasting task
parser.add_argument('--seq_len', type=int, default=672, help='input sequence length')
parser.add_argument('--input_token_len', type=int, default=576, help='input token length')
parser.add_argument('--output_token_len', type=int, default=96, help='output token length')
parser.add_argument('--test_seq_len', type=int, default=672, help='test seq len')
parser.add_argument('--test_pred_len', type=int, default=96, help='test pred len')
# model define
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--e_layers', type=int, default=1, help='encoder layers')
parser.add_argument('--d_model', type=int, default=512, help='d model')
parser.add_argument('--n_heads', type=int, default=8, help='n heads')
parser.add_argument('--d_ff', type=int, default=2048, help='d ff')
parser.add_argument('--activation', type=str, default='relu', help='activation')
parser.add_argument('--covariate', action='store_true', help='use cov', default=False)
parser.add_argument('--node_num', type=int, default=100, help='number of nodes')
parser.add_argument('--node_list', type=str, default='23,37,40', help='number of nodes for a tree')
parser.add_argument('--use_norm', action='store_true', help='use norm', default=False)
parser.add_argument('--nonautoregressive', action='store_true', help='nonautoregressive', default=False)
parser.add_argument('--test_dir', type=str, default='./test', help='test dir')
parser.add_argument('--test_file_name', type=str, default='checkpoint.pth', help='test file')
parser.add_argument('--output_attention', action='store_true', help='output attention', default=False)
parser.add_argument('--visualize', action='store_true', help='visualize', default=False)
parser.add_argument('--flash_attention', action='store_true', help='flash attention', default=False)
# adaptation
parser.add_argument('--adaptation', action='store_true', help='adaptation', default=False)
parser.add_argument('--pretrain_model_path', type=str, default='pretrain_model.pth', help='pretrain model path')
parser.add_argument('--subset_rand_ratio', type=float, default=1, help='few shot ratio')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--cosine', action='store_true', help='use cosine annealing lr', default=False)
parser.add_argument('--tmax', type=int, default=10, help='tmax in cosine anealing lr')
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--valid_last', action='store_true', help='valid last', default=False)
parser.add_argument('--last_token', action='store_true', help='last token', default=False)
# GPU
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--ddp', action='store_true', help='Distributed Data Parallel', default=False)
parser.add_argument('--dp', action='store_true', help='Data Parallel', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
args = parser.parse_args()
fix_seed = args.seed
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
args.node_list = [int(x) for x in args.node_list.split(',')]
if args.dp:
args.devices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
elif args.ddp:
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "64209")
hosts = int(os.environ.get("WORLD_SIZE", "8"))
rank = int(os.environ.get("RANK", "0"))
local_rank = int(os.environ.get("LOCAL_RANK", "0"))
gpus = torch.cuda.device_count()
args.local_rank = local_rank
print(ip, port, hosts, rank, local_rank, gpus)
dist.init_process_group(backend="nccl", init_method=f"tcp://{ip}:{port}", world_size=hosts,
rank=rank)
torch.cuda.set_device(local_rank)
if args.task_name == 'forecast':
Exp = Exp_Forecast
else:
Exp = Exp_Forecast
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
exp = Exp(args) # set experiments
setting = '{}_{}_{}_{}_sl{}_it{}_ot{}_lr{}_bt{}_wd{}_el{}_dm{}_dff{}_nh{}_cos{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.seq_len,
args.input_token_len,
args.output_token_len,
args.learning_rate,
args.batch_size,
args.weight_decay,
args.e_layers,
args.d_model,
args.d_ff,
args.n_heads,
args.cosine,
args.des, ii)
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
if not args.ddp and not args.dp:
exp.test(setting)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_{}_{}_sl{}_it{}_ot{}_lr{}_bt{}_wd{}_el{}_dm{}_dff{}_nh{}_cos{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.seq_len,
args.input_token_len,
args.output_token_len,
args.learning_rate,
args.batch_size,
args.weight_decay,
args.e_layers,
args.d_model,
args.d_ff,
args.n_heads,
args.cosine,
args.des, ii)
exp = Exp(args) # set experiments
exp.test(setting, test=1)
torch.cuda.empty_cache()