forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
pretrain_gpt.py
183 lines (151 loc) · 6.23 KB
/
pretrain_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain GPT"""
import torch
import torch.distributed
from megatron.core import parallel_state
from functools import partial
from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron import get_tokenizer
from megatron.core import tensor_parallel
from megatron.core.pipeline_parallel.sp_utils import get_splits
from megatron.core.enums import ModelType
from megatron.data.gpt_dataset import build_train_valid_test_datasets
from megatron.model import GPTModel
from megatron.training import pretrain
from megatron.utils import get_ltor_masks_and_position_ids
from megatron.utils import average_losses_across_data_parallel_group
from megatron.arguments import core_transformer_config_from_args
def get_batch_sp():
offset = -1
global_data = None
count = 0
def get_data(*args, **kwargs):
pipe_sp = get_args().pipe_sp_splits
nonlocal global_data, offset
nonlocal count
if offset == -1 or offset+1 == pipe_sp:
global_data = get_batch(*args,**kwargs)
# torch.save(global_data, f"./cache/data/global_data_{count}.pt")
count += 1
offset = (offset+1) % pipe_sp
tokens, labels, loss_mask, attention_mask, position_ids = global_data
seq_length = tokens.size(1)
global_args = get_args()
global_args.pipe_sp_strategy = "average" if global_args.pipe_sp_splits == 1 else global_args.pipe_sp_strategy
if global_args.pipe_sp_strategy == "uniform_comp":
l_s = 0
for idx,split in enumerate(get_splits()):
_tokens = tokens[:, l_s:l_s+split]
_labels = labels[:, l_s:l_s+split]
# _loss_mask = loss_mask[:, l_s:l_s+split]
_loss_mask = loss_mask
_loss_mask._start = l_s
_loss_mask._end = l_s+split
_position_ids = position_ids[:, l_s:l_s+split]
local_data = (_tokens, _labels, _loss_mask, attention_mask, _position_ids, offset)
l_s += split
if idx == offset:
break
elif global_args.pipe_sp_strategy == "average":
tokens = tokens.chunk(pipe_sp, dim=1)[offset]
labels = labels.chunk(pipe_sp, dim=1)[offset]
loss_mask._start = seq_length // pipe_sp * offset
loss_mask._end = seq_length // pipe_sp * (offset+1)
# loss_mask = loss_mask.chunk(pipe_sp, dim=1)[offset]
position_ids = position_ids.chunk(pipe_sp, dim=1)[offset]
local_data = (tokens, labels, loss_mask, attention_mask, position_ids, offset)
return local_data
return get_data
get_batch_sp_func = get_batch_sp()
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
print_rank_0('building GPT model ...')
config = core_transformer_config_from_args(get_args())
model = GPTModel(
config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process
)
return model
def get_batch(data_iterator):
"""Generate a batch"""
args = get_args()
tokenizer = get_tokenizer()
# Items and their type.
keys = ['text']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
return tokens, labels, loss_mask, attention_mask, position_ids
def loss_func(loss_mask, output_tensor):
losses = output_tensor.float()
start = loss_mask._start
end = loss_mask._end
loss_mask_p = loss_mask[:, start:end]
loss_mask = loss_mask.contiguous()
loss_mask = loss_mask.view(-1).float()
args = get_args()
if get_args().pipe_sp_splits > 1:
loss_mask_p = loss_mask_p.contiguous().view(-1).float()
loss = torch.sum(losses.view(-1) * loss_mask_p) / loss_mask.sum() * args.pipe_sp_splits
else:
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {'lm loss': averaged_loss[0]}
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
tokens, labels, loss_mask, attention_mask, position_ids, offset = get_batch_sp_func(
data_iterator)
timers('batch-generator').stop()
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels, micro_sp_idx=offset)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
print_rank_0('> building train, validation, and test datasets '
'for GPT ...')
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
data_prefix=args.data_path,
data_impl=args.data_impl,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
seq_length=args.seq_length,
seed=args.seed,
skip_warmup=(not args.mmap_warmup),
train_data_prefix=args.train_data_path,
valid_data_prefix=args.valid_data_path,
test_data_prefix=args.test_data_path,
data_cache_path=args.data_cache_path)
print_rank_0("> finished creating GPT datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
pretrain(train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})