-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlgc.h
268 lines (207 loc) · 8.8 KB
/
lgc.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
** $Id: lgc.h $
** Garbage Collector
** See Copyright Notice in lua.h
*/
#ifndef lgc_h
#define lgc_h
#include <stddef.h>
#include "lobject.h"
#include "lstate.h"
/*
** Collectable objects may have one of three colors: white, which means
** the object is not marked; gray, which means the object is marked, but
** its references may be not marked; and black, which means that the
** object and all its references are marked. The main invariant of the
** garbage collector, while marking objects, is that a black object can
** never point to a white one. Moreover, any gray object must be in a
** "gray list" (gray, grayagain, weak, allweak, ephemeron) so that it
** can be visited again before finishing the collection cycle. (Open
** upvalues are an exception to this rule, as they are attached to
** a corresponding thread.) These lists have no meaning when the
** invariant is not being enforced (e.g., sweep phase).
*/
/*
** Possible states of the Garbage Collector
*/
#define GCSpropagate 0
#define GCSenteratomic 1
#define GCSatomic 2
#define GCSswpallgc 3
#define GCSswpfinobj 4
#define GCSswptobefnz 5
#define GCSswpend 6
#define GCScallfin 7
#define GCSpause 8
#define issweepphase(g) \
(GCSswpallgc <= (g)->gcstate && (g)->gcstate <= GCSswpend)
/*
** macro to tell when main invariant (white objects cannot point to black
** ones) must be kept. During a collection, the sweep phase may break
** the invariant, as objects turned white may point to still-black
** objects. The invariant is restored when sweep ends and all objects
** are white again.
*/
#define keepinvariant(g) ((g)->gcstate <= GCSatomic)
/*
** some useful bit tricks
*/
#define resetbits(x,m) ((x) &= cast_byte(~(m)))
#define setbits(x,m) ((x) |= (m))
#define testbits(x,m) ((x) & (m))
#define bitmask(b) (1<<(b))
#define bit2mask(b1,b2) (bitmask(b1) | bitmask(b2))
#define l_setbit(x,b) setbits(x, bitmask(b))
#define resetbit(x,b) resetbits(x, bitmask(b))
#define testbit(x,b) testbits(x, bitmask(b))
/*
** Layout for bit use in 'marked' field. First three bits are
** used for object "age" in generational mode. Last bit is used
** by tests.
*/
#define WHITE0BIT 3 /* object is white (type 0) */
#define WHITE1BIT 4 /* object is white (type 1) */
#define BLACKBIT 5 /* object is black */
#define FINALIZEDBIT 6 /* object has been marked for finalization */
#define TESTBIT 7
#define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT)
#define iswhite(x) testbits((x)->marked, WHITEBITS)
#define isblack(x) testbit((x)->marked, BLACKBIT)
#define isgray(x) /* neither white nor black */ \
(!testbits((x)->marked, WHITEBITS | bitmask(BLACKBIT)))
#define tofinalize(x) testbit((x)->marked, FINALIZEDBIT)
#define otherwhite(g) ((g)->currentwhite ^ WHITEBITS)
#define isdeadm(ow,m) ((m) & (ow))
#define isdead(g,v) isdeadm(otherwhite(g), (v)->marked)
#define changewhite(x) ((x)->marked ^= WHITEBITS)
#define nw2black(x) \
check_exp(!iswhite(x), l_setbit((x)->marked, BLACKBIT))
#define luaC_white(g) cast_byte((g)->currentwhite & WHITEBITS)
/* object age in generational mode */
#define G_NEW 0 /* created in current cycle */
#define G_SURVIVAL 1 /* created in previous cycle */
#define G_OLD0 2 /* marked old by frw. barrier in this cycle */
#define G_OLD1 3 /* first full cycle as old */
#define G_OLD 4 /* really old object (not to be visited) */
#define G_TOUCHED1 5 /* old object touched this cycle */
#define G_TOUCHED2 6 /* old object touched in previous cycle */
#define AGEBITS 7 /* all age bits (111) */
#define getage(o) ((o)->marked & AGEBITS)
#define setage(o,a) ((o)->marked = cast_byte(((o)->marked & (~AGEBITS)) | a))
#define isold(o) (getage(o) > G_SURVIVAL)
/*
** In generational mode, objects are created 'new'. After surviving one
** cycle, they become 'survival'. Both 'new' and 'survival' can point
** to any other object, as they are traversed at the end of the cycle.
** We call them both 'young' objects.
** If a survival object survives another cycle, it becomes 'old1'.
** 'old1' objects can still point to survival objects (but not to
** new objects), so they still must be traversed. After another cycle
** (that, being old, 'old1' objects will "survive" no matter what)
** finally the 'old1' object becomes really 'old', and then they
** are no more traversed.
**
** To keep its invariants, the generational mode uses the same barriers
** also used by the incremental mode. If a young object is caught in a
** forward barrier, it cannot become old immediately, because it can
** still point to other young objects. Instead, it becomes 'old0',
** which in the next cycle becomes 'old1'. So, 'old0' objects is
** old but can point to new and survival objects; 'old1' is old
** but cannot point to new objects; and 'old' cannot point to any
** young object.
**
** If any old object ('old0', 'old1', 'old') is caught in a back
** barrier, it becomes 'touched1' and goes into a gray list, to be
** visited at the end of the cycle. There it evolves to 'touched2',
** which can point to survivals but not to new objects. In yet another
** cycle then it becomes 'old' again.
**
** The generational mode must also control the colors of objects,
** because of the barriers. While the mutator is running, young objects
** are kept white. 'old', 'old1', and 'touched2' objects are kept black,
** as they cannot point to new objects; exceptions are threads and open
** upvalues, which age to 'old1' and 'old' but are kept gray. 'old0'
** objects may be gray or black, as in the incremental mode. 'touched1'
** objects are kept gray, as they must be visited again at the end of
** the cycle.
*/
/*
** {======================================================
** Default Values for GC parameters
** =======================================================
*/
/*
** Minor collections will shift to major ones after LUAI_MINORMAJOR%
** bytes become old.
*/
#define LUAI_MINORMAJOR 70
/*
** Major collections will shift to minor ones after a collection
** collects at least LUAI_MAJORMINOR% of the new bytes.
*/
#define LUAI_MAJORMINOR 50
/*
** A young (minor) collection will run after creating LUAI_GENMINORMUL%
** new bytes.
*/
#define LUAI_GENMINORMUL 20
/* incremental */
/* Number of bytes must be LUAI_GCPAUSE% before starting new cycle */
#define LUAI_GCPAUSE 250
/*
** Step multiplier: The collector handles LUAI_GCMUL% work units for
** each new allocated word. (Each "work unit" corresponds roughly to
** sweeping one object or traversing one slot.)
*/
#define LUAI_GCMUL 200
/* How many bytes to allocate before next GC step */
#define LUAI_GCSTEPSIZE (200 * sizeof(Table))
#define setgcparam(g,p,v) (g->gcparams[LUA_GCP##p] = luaO_codeparam(v))
#define applygcparam(g,p,x) luaO_applyparam(g->gcparams[LUA_GCP##p], x)
/* }====================================================== */
/*
** Control when GC is running:
*/
#define GCSTPUSR 1 /* bit true when GC stopped by user */
#define GCSTPGC 2 /* bit true when GC stopped by itself */
#define GCSTPCLS 4 /* bit true when closing Lua state */
#define gcrunning(g) ((g)->gcstp == 0)
/*
** Does one step of collection when debt becomes zero. 'pre'/'pos'
** allows some adjustments to be done only when needed. macro
** 'condchangemem' is used only for heavy tests (forcing a full
** GC cycle on every opportunity)
*/
#if !defined(HARDMEMTESTS)
#define condchangemem(L,pre,pos,emg) ((void)0)
#else
#define condchangemem(L,pre,pos,emg) \
{ if (gcrunning(G(L))) { pre; luaC_fullgc(L, emg); pos; } }
#endif
#define luaC_condGC(L,pre,pos) \
{ if (G(L)->GCdebt <= 0) { pre; luaC_step(L); pos;}; \
condchangemem(L,pre,pos,0); }
/* more often than not, 'pre'/'pos' are empty */
#define luaC_checkGC(L) luaC_condGC(L,(void)0,(void)0)
#define luaC_objbarrier(L,p,o) ( \
(isblack(p) && iswhite(o)) ? \
luaC_barrier_(L,obj2gco(p),obj2gco(o)) : cast_void(0))
#define luaC_barrier(L,p,v) ( \
iscollectable(v) ? luaC_objbarrier(L,p,gcvalue(v)) : cast_void(0))
#define luaC_objbarrierback(L,p,o) ( \
(isblack(p) && iswhite(o)) ? luaC_barrierback_(L,p) : cast_void(0))
#define luaC_barrierback(L,p,v) ( \
iscollectable(v) ? luaC_objbarrierback(L, p, gcvalue(v)) : cast_void(0))
LUAI_FUNC void luaC_fix (lua_State *L, GCObject *o);
LUAI_FUNC void luaC_freeallobjects (lua_State *L);
LUAI_FUNC void luaC_step (lua_State *L);
LUAI_FUNC void luaC_runtilstate (lua_State *L, int state, int fast);
LUAI_FUNC void luaC_fullgc (lua_State *L, int isemergency);
LUAI_FUNC GCObject *luaC_newobj (lua_State *L, lu_byte tt, size_t sz);
LUAI_FUNC GCObject *luaC_newobjdt (lua_State *L, lu_byte tt, size_t sz,
size_t offset);
LUAI_FUNC void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v);
LUAI_FUNC void luaC_barrierback_ (lua_State *L, GCObject *o);
LUAI_FUNC void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt);
LUAI_FUNC void luaC_changemode (lua_State *L, int newmode);
#endif