-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
425 lines (355 loc) · 17.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import torch
import transformers
import utils
from torch.utils.data import Dataset, DataLoader
from transformers import Trainer, AutoTokenizer
from peft import get_peft_model, LoraConfig, TaskType, AutoPeftModelForCausalLM
from tqdm import tqdm
import lftk
import spacy
import pdb
import sys
from accelerate import Accelerator
import accelerate
import torch.distributed as dist
import random
import time
import numpy as np
import os
from copy import deepcopy
from utils import get_lftk_mappings
def gather_object(object):
output_objects = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(output_objects, object)
return [x for y in output_objects for x in y]
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
PROMPT_DICT = {
"prompt_input": (
"{meta_instruction}\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
),
"prompt_no_input": (
"{meta_instruction}\n\n"
"### Instruction:\n{instruction}\n\n### Response:\n"
),
"prompt_input_few_shot": (
"{meta_instruction}\n\n"
"{demos}\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
),
"prompt_no_input_few_shot": (
"{meta_instruction}\n\n"
"{demos}\n\n"
"### Instruction:\n{instruction}\n\n### Response:\n"
),
}
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="./models/controllable-llama2-7b")
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the eval data."})
num_samples: Optional[int] = field(default=None, metadata={"help": "Number of subsamples to evaluate on. Default is None, which means evaluate on all samples."})
response_cache: Optional[str] = field(default=None)
few_shot: bool = field(default=False)
output_path: str = field(default=None)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=1024,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
eval_batch_size: int = field(default=8, metadata={"help": "Batch size for evaluation."})
seed: int = field(default=0, metadata={"help": "Random seed."})
use_lora: bool = field(default=False)
temperature: float = field(default=1.0)
do_sample: bool = field(default=False)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, few_shot: bool=False):
super(SupervisedDataset, self).__init__()
logging.warning("Loading data...")
list_data_dict = utils.jload(data_path)
if isinstance(list_data_dict, dict):
if "metadata" in list_data_dict:
self.metadata = list_data_dict["metadata"]
self.lftk_ranges = self.metadata["feat_ranges"]
list_data_dict = list_data_dict["data"]
else:
raise ValueError(f"Invalid data format. Please check the data format of {data_path}.")
self.list_data_dict = list_data_dict
logging.warning("Formatting inputs...")
if not few_shot:
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
else:
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input_few_shot"], PROMPT_DICT["prompt_no_input_few_shot"]
sources = [
prompt_input.format_map(example) if example.get("input", "") != "" else prompt_no_input.format_map(example)
for example in list_data_dict
]
self.inputs = sources
lftk_key2id, _ = get_lftk_mappings()
self.num_tags = [torch.as_tensor(example["num_tags"]) for example in list_data_dict]
self.tag_ids = [torch.as_tensor([lftk_key2id[tag] for tag in example["selected_tags"]]) for example in list_data_dict]
self.tag_values = [torch.as_tensor(example["tag_values"]) for example in list_data_dict]
def __len__(self):
return len(self.inputs)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(example_id=i, inputs=self.inputs[i], num_tags=self.num_tags[i], tag_ids=self.tag_ids[i], tag_values=self.tag_values[i])
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
example_ids = torch.as_tensor([instance["example_id"] for instance in instances])
inputs = [instance["inputs"] for instance in instances]
inputs = self.tokenizer(
inputs,
return_tensors="pt",
padding="longest",
max_length=self.tokenizer.model_max_length,
truncation=True,
)
input_ids, attention_mask = inputs.input_ids, inputs.attention_mask
num_tags, tag_ids, tag_values = tuple([instance[key] for instance in instances] for key in ("num_tags", "tag_ids", "tag_values"))
num_tags = torch.as_tensor(num_tags)
tag_ids = torch.nn.utils.rnn.pad_sequence(tag_ids, batch_first=True, padding_value=IGNORE_INDEX)
tag_values = torch.nn.utils.rnn.pad_sequence(tag_values, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
example_ids=example_ids,
input_ids=input_ids,
attention_mask=attention_mask,
num_tags=num_tags,
tag_ids=tag_ids,
tag_values=tag_values,
)
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict:
"""Make dataset and collator for evaluation."""
eval_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, few_shot=data_args.few_shot)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=None, eval_dataset=eval_dataset, data_collator=data_collator)
def eval():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
accelerator = Accelerator()
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
device_map={"": accelerator.process_index},
)
model.eval()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="left",
use_fast=False,
)
special_tokens_dict = dict()
if tokenizer.pad_token is None:
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None:
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None:
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None:
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
eval_dataset = data_module["eval_dataset"]
if data_args.num_samples is not None:
subset_indices = range(data_args.num_samples)
eval_subset = torch.utils.data.Subset(eval_dataset, subset_indices)
else:
subset_indices = None
eval_subset = eval_dataset
print(f"len(eval_subset)={len(eval_subset)}")
accelerator.wait_for_everyone()
start = time.time()
with accelerator.split_between_processes(list(range(len(eval_subset)))) as subsubset_indices:
eval_subsubset = torch.utils.data.Subset(eval_subset, subsubset_indices)
eval_subsubsetloader = DataLoader(
eval_subsubset,
batch_size=training_args.eval_batch_size,
collate_fn=data_module["data_collator"],
pin_memory=True,
)
total_tags = 0
total_correct_tags = 0
num_samples = len(eval_subsubset)
num_strict_follow = 0
num_loose_follow = 0
count_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
correct_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
l1_error_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
l2_error_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
per_example_results = []
nlp = spacy.load("en_core_web_sm")
lftk_key2id, lftk_id2key = get_lftk_mappings()
for batch in tqdm(eval_subsubsetloader, disable=(not accelerator.is_local_main_process)):
batch = {k: v.to(accelerator.device) for k, v in batch.items()}
example_ids = batch["example_ids"].tolist()
input_ids, attention_mask = batch["input_ids"], batch["attention_mask"]
num_tags, tag_ids, tag_values = batch["num_tags"], batch["tag_ids"], batch["tag_values"]
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=tokenizer.model_max_length,
temperature=training_args.temperature,
do_sample=training_args.do_sample,
)
decoded_outputs = tokenizer.batch_decode(outputs[:, input_ids.shape[-1]:], skip_special_tokens=True)
for idx, decoded_output in enumerate(decoded_outputs):
doc = nlp(decoded_output)
selected_tag_ids = tag_ids[idx][:num_tags[idx]]
selected_tags = [lftk_id2key[tag_id] for tag_id in selected_tag_ids.tolist()]
extracted_features = lftk.Extractor(docs=doc).extract(selected_tags)
assert list(extracted_features.keys()) == selected_tags, "extracted_features are not in the same order as selected_tags"
tag_value_preds = torch.as_tensor(list(extracted_features.values()), device=accelerator.device)
matches = (tag_value_preds == tag_values[idx][:num_tags[idx]]).int()
l1_error = torch.abs(tag_value_preds - tag_values[idx][:num_tags[idx]])
l2_error = (tag_value_preds - tag_values[idx][:num_tags[idx]]) ** 2
per_example_result = {
"example_idx": example_ids[idx],
"response": decoded_output,
"predicted_tag_values": list(extracted_features.values()),
"matches": matches.tolist(),
"l1_error": l1_error.tolist(),
"l2_error": l2_error.tolist(),
}
per_example_results.append(per_example_result)
# Compute metrics
# To compute zero_one_score
total_tags += num_tags[idx].item()
total_correct_tags += matches.sum().item()
# To compute rate of strict/loose follows
if matches.sum() == num_tags[idx]:
num_strict_follow += 1
if matches.sum() > 0:
num_loose_follow += 1
# To compute accuracy per tag
for i, tag in enumerate(selected_tags):
count_per_tag[tag] += 1
correct_per_tag[tag] += matches[i].item()
l1_error_per_tag[tag] += l1_error[i].item()
l2_error_per_tag[tag] += l2_error[i].item()
results = {
"subsubset_indices": subsubset_indices,
"total_tags": total_tags,
"total_correct_tags": total_correct_tags,
"num_strict_follow": num_strict_follow,
"num_loose_follow": num_loose_follow,
"count_per_tag": count_per_tag,
"correct_per_tag": correct_per_tag,
"l1_error_per_tag": l1_error_per_tag,
"l2_error_per_tag": l2_error_per_tag,
"per_example_results": per_example_results,
}
results = [results]
if accelerator.num_processes > 1:
results = accelerator.gather_for_metrics(results)
if accelerator.is_main_process:
stop = time.time()
print(f"Number of examples evaluated: {len(eval_subset)}")
print(f"Time taken: {stop - start:.2f}s")
print(f"Time per example: {(stop - start) / len(eval_subset):.2f}s")
# Aggregate results
total_tags = 0
total_correct_tags = 0
num_samples = len(eval_subset)
num_strict_follow = 0
num_loose_follow = 0
count_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
correct_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
l1_error_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
l2_error_per_tag = {feat: 0 for feat in eval_dataset.metadata["selected_features"]}
for result in results:
total_tags += result["total_tags"]
total_correct_tags += result["total_correct_tags"]
num_strict_follow += result["num_strict_follow"]
num_loose_follow += result["num_loose_follow"]
for tag, count in result["count_per_tag"].items():
count_per_tag[tag] += count
correct_per_tag[tag] += result["correct_per_tag"][tag]
l1_error_per_tag[tag] += result["l1_error_per_tag"][tag]
l2_error_per_tag[tag] += result["l2_error_per_tag"][tag]
per_example_results = sum([result["per_example_results"] for result in results], [])
# Save fine-grained results
list_data_dict = eval_dataset.list_data_dict
for res in per_example_results:
list_data_dict[res["example_idx"]].update(res)
# Compute metrics
zero_one_score = total_correct_tags / total_tags
strictly_followed = num_strict_follow / num_samples
loosely_followed = num_loose_follow / num_samples
accuracy_per_tag = {tag: ((correct_per_tag[tag] / count_per_tag[tag]) if count_per_tag[tag] > 0 else np.nan) for tag in eval_dataset.metadata["selected_features"]}
mae_per_tag = {tag: ((l1_error_per_tag[tag] / count_per_tag[tag]) if count_per_tag[tag] > 0 else np.nan) for tag in eval_dataset.metadata["selected_features"]}
mse_per_tag = {tag: ((l2_error_per_tag[tag] / count_per_tag[tag]) if count_per_tag[tag] > 0 else np.nan) for tag in eval_dataset.metadata["selected_features"]}
results = {
"per_example_results": list_data_dict,
"zero_one_score": zero_one_score,
"strictly_followed": strictly_followed,
"loosely_followed": loosely_followed,
"accuracy_per_tag": accuracy_per_tag,
"mae_per_tag": mae_per_tag,
"mse_per_tag": mse_per_tag,
}
print(f"zero_one_score: {zero_one_score:.4f}")
print(f"strictly_followed: {strictly_followed:.4f}")
print(f"loosely_followed: {loosely_followed:.4f}")
print("accuracy_per_tag:")
for tag, accuracy in accuracy_per_tag.items():
print(f"\t{tag}: {accuracy:.4f}")
print("mae_per_tag:")
for tag, mae in mae_per_tag.items():
print(f"\t{tag}: {mae:.4f}")
print("mse_per_tag:")
for tag, mse in mse_per_tag.items():
print(f"\t{tag}: {mse:.4f}")
utils.jdump(results, f"{data_args.output_path}")
print(f"Results saved to {data_args.output_path}")
if __name__ == "__main__":
eval()