diff --git a/docs/articles/basics.html b/docs/articles/basics.html index 4d882549..9f56c6f6 100644 --- a/docs/articles/basics.html +++ b/docs/articles/basics.html @@ -528,8 +528,7 @@
As we can see, the stacked ensemble outperforms each of the member models, though is closely followed by one of its members.
-Voila! You’ve now made use of the stacks package to predict red-eyed tree frog embryo hatching using a stacked ensemble! Altogether, the process looks something like this:
-Voila! You’ve now made use of the stacks package to predict red-eyed tree frog embryo hatching using a stacked ensemble! The full visual outline for these steps can be found here.
diff --git a/docs/articles/basics_files/figure-html/weight-plot-1.png b/docs/articles/basics_files/figure-html/weight-plot-1.png index 6053327a..f1a8e005 100644 Binary files a/docs/articles/basics_files/figure-html/weight-plot-1.png and b/docs/articles/basics_files/figure-html/weight-plot-1.png differ diff --git a/docs/articles/classification_files/figure-html/unnamed-chunk-3-1.png b/docs/articles/classification_files/figure-html/unnamed-chunk-3-1.png index 01fd362f..9aa103b9 100644 Binary files a/docs/articles/classification_files/figure-html/unnamed-chunk-3-1.png and b/docs/articles/classification_files/figure-html/unnamed-chunk-3-1.png differ diff --git a/docs/articles/classification_files/figure-html/weight-plot-1.png b/docs/articles/classification_files/figure-html/weight-plot-1.png index 5d1add91..f7456835 100644 Binary files a/docs/articles/classification_files/figure-html/weight-plot-1.png and b/docs/articles/classification_files/figure-html/weight-plot-1.png differ diff --git a/docs/index.html b/docs/index.html index e9de9d82..fa68e94d 100644 --- a/docs/index.html +++ b/docs/index.html @@ -5,7 +5,7 @@ -These stacking coefficients determine which candidate ensemble members will become ensemble members. Candidates with non-zero stacking coefficients are then fitted on the whole training set, altogether making up a model_stack
object.
This model stack object, outputted from fit_members()
, is ready to predict on new data! The trained ensemble members are often referred to as base models in the stacking literature.
At a high level, the process follows these steps:
-The API for the package closely mirrors these ideas. See the basics
vignette for an example of how this grammar is implemented!
The full visual outline for these steps can be found here. The API for the package closely mirrors these ideas. See the basics
vignette for an example of how this grammar is implemented!
Behind the scenes, data stack objectss are just tibble::tibble()
s,
+
Behind the scenes, data stack objects are just tibble::tbl_dfs, where the first column gives the true response values, and the remaining columns give the assessment set predictions for each candidate. In the regression setting, there's only diff --git a/docs/reference/autoplot.linear_stack.html b/docs/reference/autoplot.linear_stack.html index d2a32e98..1d5a8fb5 100644 --- a/docs/reference/autoplot.linear_stack.html +++ b/docs/reference/autoplot.linear_stack.html @@ -6,7 +6,7 @@ -
autoplot.linear_stack.Rd
Plot results of a linear stacking model
+Plot results of a stacked ensemble model.
# S3 method for linear_stack @@ -156,7 +156,8 @@Arg
object -+ A
linear_stack
object.A
linear_stack
object outputted fromblend_predictions()
+orfit_members()
.type diff --git a/docs/reference/axe_model_stack.html b/docs/reference/axe_model_stack.html index 5443a8b4..fbc99375 100644 --- a/docs/reference/axe_model_stack.html +++ b/docs/reference/axe_model_stack.html @@ -184,7 +184,7 @@Arg
verbose +Default is Print information each time an axe method is executed. Notes how much memory is released and what functions are disabled. -Default is FALSE.
FALSE
.... @@ -197,7 +197,7 @@Value
Axed model_stack object.
Examples
-+#>#> x Disabled: `print()`, `summary()`#> [1] "9117392 bytes"#> [1] "5285368 bytes"+#> [1] "5285368 bytes"# }metric +determined by A call to
yardstick::metric_set()
. The metric(s) to use in tuning the lasso penalty on the stacking coefficients. Default values are -determined bytune::tune_grid
from the outcome class.tune::tune_grid()
from the outcome class.diff --git a/docs/reference/build_linear_predictor.html b/docs/reference/build_linear_predictor.html index f18f7614..67cc8e1f 100644 --- a/docs/reference/build_linear_predictor.html +++ b/docs/reference/build_linear_predictor.html @@ -169,7 +169,7 @@ control An object inheriting from
control_grid
to be passed to -the model determining stacking coefficients. Seetune::control_grid
+the model determining stacking coefficients. Seetune::control_grid()
documentation for details on possible values. Note that anyextract
entry will be overwritten internally.Arg
x -+ An object that uses a
glmnet
model and all numeric predictors.An object that uses a
glmnet::glmnet()
model and all numeric predictors.... diff --git a/docs/reference/collect_parameters.html b/docs/reference/collect_parameters.html index 8cc10b6e..6c22653b 100644 --- a/docs/reference/collect_parameters.html +++ b/docs/reference/collect_parameters.html @@ -187,7 +187,7 @@Arg
Value
-A
+tibble
with information on member names and hyperparameters.A tibble::tbl_df with information on member names and hyperparameters.
Example Data
diff --git a/docs/reference/control_stack.html b/docs/reference/control_stack.html index 4d31a8d3..d434f1be 100644 --- a/docs/reference/control_stack.html +++ b/docs/reference/control_stack.html @@ -51,7 +51,7 @@Supply these light wrappers as the
control
argument in a -tune::tune_grid, tune::tune_bayes, or tune::fit_resamples +tune::tune_grid()
,tune::tune_bayes()
, ortune::fit_resamples()
call to return the needed elements for use in a data stack. These functions will return the appropriate control grid to ensure that assessment set predictions and information on model specifications and diff --git a/docs/reference/example_data.html b/docs/reference/example_data.html index 3f2978ac..c8c4173e 100644 --- a/docs/reference/example_data.html +++ b/docs/reference/example_data.html @@ -50,7 +50,7 @@ - @@ -146,7 +146,7 @@Example Objects
-diff --git a/docs/reference/figures/logo.png b/docs/reference/figures/logo.png index 693cdfa5..5b05d35a 100644 Binary files a/docs/reference/figures/logo.png and b/docs/reference/figures/logo.png differ diff --git a/docs/reference/fit_members.html b/docs/reference/fit_members.html index 8cb376dc..467bdcb7 100644 --- a/docs/reference/fit_members.html +++ b/docs/reference/fit_members.html @@ -165,8 +165,7 @@This package provides some resampling objects and datasets for use in examples +
stacks provides some resampling objects and datasets for use in examples and vignettes derived from a study on 1212 red-eyed tree frog embryos!
Arg
model_stack -+ A
model_stack
object outputted byblend_predictions()
or -fit_members()
A
model_stack
object outputted byblend_predictions()
.... diff --git a/docs/reference/get_expressions.html b/docs/reference/get_expressions.html index 21573b30..f264e364 100644 --- a/docs/reference/get_expressions.html +++ b/docs/reference/get_expressions.html @@ -164,7 +164,7 @@Arg
x -+ A
parsnip
model with the glmnet engine.A
parsnip
model with theglmnet
engine.... diff --git a/docs/reference/index.html b/docs/reference/index.html index bb7cc1db..35c28b08 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -246,7 +246,7 @@stacks_description -
+ stacks: Tidy Model Stacking Stools
stacks: Tidy Model Stacking
@@ -265,7 +265,7 @@ autoplot(<linear_stack>) -
+ Plot results of a linear stacking model
Plot results of a stacked ensemble model.
diff --git a/docs/reference/predict.data_stack.html b/docs/reference/predict.data_stack.html index 16b09d97..e2944100 100644 --- a/docs/reference/predict.data_stack.html +++ b/docs/reference/predict.data_stack.html @@ -50,9 +50,8 @@ - + @@ -147,9 +146,8 @@ Predicting with a model stack
-To predict with a stacked ensemble, the data stack must be evaluated -with
+blend_predictions()
and its member models fitted with -fit_members()
to predict on new data.The data stack must be evaluated with
blend_predictions()
and its member +models fitted withfit_members()
to predict on new data.# S3 method for data_stack diff --git a/docs/reference/predict.model_stack.html b/docs/reference/predict.model_stack.html index 9b4b5ec3..a6447f2e 100644 --- a/docs/reference/predict.model_stack.html +++ b/docs/reference/predict.model_stack.html @@ -156,7 +156,7 @@Arg
object -+ A model stack with fitted members.
A model stack with fitted members outputted from
fit_members()
.new_data diff --git a/docs/reference/prediction_eqn.html b/docs/reference/prediction_eqn.html index 9bd0c789..1cd41216 100644 --- a/docs/reference/prediction_eqn.html +++ b/docs/reference/prediction_eqn.html @@ -164,7 +164,7 @@Arg
x -+ An object that uses a
glmnet
model and all numeric predictors.An object that uses a
glmnet::glmnet()
model and all numeric predictors.... diff --git a/docs/reference/stacks_description.html b/docs/reference/stacks_description.html index e743ea04..ec78453e 100644 --- a/docs/reference/stacks_description.html +++ b/docs/reference/stacks_description.html @@ -6,7 +6,7 @@ -stacks: Tidy Model Stacking Stools — stacks_description • stacks +stacks: Tidy Model Stacking — stacks_description • stacks @@ -49,7 +49,7 @@ - +-stacks: Tidy Model Stacking Stools
+stacks: Tidy Model Stacking
stacks_description.Rd