-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.go
967 lines (856 loc) · 28.7 KB
/
tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
// Copyright 2022 Sylvain Müller. All rights reserved.
// Mount of this source code is governed by a Apache-2.0 license that can be found
// at https://github.com/tigerwill90/fox/blob/master/LICENSE.txt.
package fox
import (
"fmt"
"math"
"net/http"
"slices"
"strings"
"sync"
"sync/atomic"
)
// Tree implements a Concurrent Radix Tree that supports lock-free reads while allowing concurrent writes.
// The caller is responsible for ensuring that all writes are run serially.
//
// IMPORTANT:
// Each tree as its own sync.Mutex that may be used to serialize write. Since the router tree may be swapped at any
// given time (see [Router.Swap]), you MUST always copy the pointer locally to avoid inadvertently causing a deadlock
// by locking/unlocking the wrong Tree.
//
// Good:
// t := fox.Tree()
// t.Lock()
// defer t.Unlock()
//
// Dramatically bad, may cause deadlock
// fox.Tree().Lock()
// defer fox.Tree().Unlock()
type Tree struct {
ctx sync.Pool
nodes atomic.Pointer[[]*node]
fox *Router
sync.Mutex
maxParams atomic.Uint32
maxDepth atomic.Uint32
race atomic.Uint32
}
// Handle registers a new handler for the given method and path. On success, it returns the newly registered [Route].
// If an error occurs, it returns one of the following:
// - [ErrRouteExist]: If the route is already registered.
// - [ErrRouteConflict]: If the route conflicts with another.
// - [ErrInvalidRoute]: If the provided method or path is invalid.
//
// It's safe to add a new handler while the tree is in use for serving requests. However, this function is NOT
// thread-safe and should be run serially, along with all other [Tree] APIs that perform write operations.
// To override an existing route, use [Tree.Update].
func (t *Tree) Handle(method, path string, handler HandlerFunc, opts ...PathOption) (*Route, error) {
if handler == nil {
return nil, fmt.Errorf("%w: nil handler", ErrInvalidRoute)
}
if matched := regEnLetter.MatchString(method); !matched {
return nil, fmt.Errorf("%w: missing or invalid http method", ErrInvalidRoute)
}
p, catchAllKey, n, err := parseRoute(path)
if err != nil {
return nil, err
}
if n < 0 || n > math.MaxUint32 {
return nil, fmt.Errorf("params count overflows (%d)", n)
}
rte := t.newRoute(path, handler, opts...)
// nolint:gosec
if err = t.insert(method, p, catchAllKey, uint32(n), rte); err != nil {
return nil, err
}
return rte, nil
}
// Update override an existing handler for the given method and path. On success, it returns the newly registered [Route].
// If an error occurs, it returns one of the following:
// - [ErrRouteNotFound]: if the route does not exist.
// - [ErrInvalidRoute]: If the provided method or path is invalid.
//
// It's safe to update a handler while the tree is in use for serving requests. However, this function is NOT thread-safe
// and should be run serially, along with all other [Tree] APIs that perform write operations. To add a new handler,
// use [Tree.Handle] method.
func (t *Tree) Update(method, path string, handler HandlerFunc, opts ...PathOption) (*Route, error) {
if handler == nil {
return nil, fmt.Errorf("%w: nil handler", ErrInvalidRoute)
}
if method == "" {
return nil, fmt.Errorf("%w: missing http method", ErrInvalidRoute)
}
p, catchAllKey, _, err := parseRoute(path)
if err != nil {
return nil, err
}
rte := t.newRoute(path, handler, opts...)
if err = t.update(method, p, catchAllKey, rte); err != nil {
return nil, err
}
return rte, nil
}
// Delete deletes an existing handler for the given method and path. If an error occurs, it returns one of the following:
// - [ErrRouteNotFound]: if the route does not exist.
// - [ErrInvalidRoute]: If the provided method or path is invalid.
// It's safe to delete a handler while the tree is in use for serving requests. However, this function is NOT
// thread-safe and should be run serially, along with all other [Tree] APIs that perform write operations.
func (t *Tree) Delete(method, path string) error {
if method == "" {
return fmt.Errorf("%w: missing http method", ErrInvalidRoute)
}
p, catchAllKey, _, err := parseRoute(path)
if err != nil {
return err
}
if !t.remove(method, p, catchAllKey) {
return fmt.Errorf("%w: route %s %s is not registered", ErrRouteNotFound, method, path)
}
return nil
}
// Has allows to check if the given method and path exactly match a registered route. This function is safe for
// concurrent use by multiple goroutine and while mutation on [Tree] are ongoing. See also [Tree.Route] as an alternative.
// This API is EXPERIMENTAL and is likely to change in future release.
func (t *Tree) Has(method, path string) bool {
return t.Route(method, path) != nil
}
// Route performs a lookup for a registered route matching the given method and path. It returns the [Route] if a
// match is found or nil otherwise. This function is safe for concurrent use by multiple goroutine and while
// mutation on [Tree] are ongoing. See also [Tree.Has] as an alternative.
// This API is EXPERIMENTAL and is likely to change in future release.
func (t *Tree) Route(method, path string) *Route {
nds := *t.nodes.Load()
index := findRootNode(method, nds)
if index < 0 {
return nil
}
c := t.ctx.Get().(*cTx)
c.resetNil()
n, tsr := t.lookup(nds[index], path, c, true)
c.Close()
if n != nil && !tsr && n.route.path == path {
return n.route
}
return nil
}
// Reverse perform a reverse lookup on the tree for the given method and path and return the matching registered [Route]
// (if any) along with a boolean indicating if the route was matched by adding or removing a trailing slash
// (trailing slash action recommended). This function is safe for concurrent use by multiple goroutine and while
// mutation on [Tree] are ongoing. See also [Tree.Lookup] as an alternative.
// This API is EXPERIMENTAL and is likely to change in future release.
func (t *Tree) Reverse(method, path string) (route *Route, tsr bool) {
nds := *t.nodes.Load()
index := findRootNode(method, nds)
if index < 0 {
return nil, false
}
c := t.ctx.Get().(*cTx)
c.resetNil()
n, tsr := t.lookup(nds[index], path, c, true)
c.Close()
if n != nil {
return n.route, tsr
}
return nil, false
}
// Lookup performs a manual route lookup for a given [http.Request], returning the matched [Route] along with a
// [ContextCloser], and a boolean indicating if the route was matched by adding or removing a trailing slash
// (trailing slash action recommended). If there is a direct match or a tsr is possible, Lookup always return a
// [Route] and a [ContextCloser]. The [ContextCloser] should always be closed if non-nil. This function is safe for
// concurrent use by multiple goroutine and while mutation on [Tree] are ongoing. See also [Tree.Reverse] as an alternative.
// This API is EXPERIMENTAL and is likely to change in future release.
func (t *Tree) Lookup(w ResponseWriter, r *http.Request) (route *Route, cc ContextCloser, tsr bool) {
nds := *t.nodes.Load()
index := findRootNode(r.Method, nds)
if index < 0 {
return
}
c := t.ctx.Get().(*cTx)
c.resetWithWriter(w, r)
target := r.URL.Path
if len(r.URL.RawPath) > 0 {
// Using RawPath to prevent unintended match (e.g. /search/a%2Fb/1)
target = r.URL.RawPath
}
n, tsr := t.lookup(nds[index], target, c, false)
if n != nil {
c.route = n.route
c.tsr = tsr
return n.route, c, tsr
}
c.Close()
return nil, nil, tsr
}
// Iter returns an iterator that provides access to a collection of iterators for traversing the routing tree.
// This function is safe for concurrent use by multiple goroutine and while mutation on [Tree] are ongoing.
// This API is EXPERIMENTAL and may change in future releases.
func (t *Tree) Iter() Iter {
return Iter{t: t}
}
// Insert is not safe for concurrent use. The path must start by '/' and it's not validated. Use
// parseRoute before.
func (t *Tree) insert(method, path, catchAllKey string, paramsN uint32, route *Route) error {
// Note that we need a consistent view of the tree during the patching so search must imperatively be locked.
if !t.race.CompareAndSwap(0, 1) {
panic(ErrConcurrentAccess)
}
defer t.race.Store(0)
var rootNode *node
nds := *t.nodes.Load()
index := findRootNode(method, nds)
if index < 0 {
rootNode = &node{key: method}
t.addRoot(rootNode)
} else {
rootNode = nds[index]
}
isCatchAll := catchAllKey != ""
result := t.search(rootNode, path)
switch result.classify() {
case exactMatch:
// e.g. matched exactly "te" node when inserting "te" key.
// te
// ├── st
// └── am
// Create a new node from "st" reference and update the "te" (parent) reference to "st" node.
if result.matched.isLeaf() {
if result.matched.isCatchAll() && isCatchAll {
return newConflictErr(method, path, catchAllKey, getRouteConflict(result.matched))
}
return fmt.Errorf("%w: new route %s %s conflict with %s", ErrRouteExist, method, route.path, result.matched.route.path)
}
// We are updating an existing node. We only need to create a new node from
// the matched one with the updated/added value (handler and wildcard).
n := newNodeFromRef(result.matched.key, route, result.matched.children, result.matched.childKeys, catchAllKey, result.matched.paramChildIndex)
t.updateMaxParams(paramsN)
result.p.updateEdge(n)
case keyEndMidEdge:
// e.g. matched until "s" for "st" node when inserting "tes" key.
// te
// ├── st
// └── am
//
// After patching
// te
// ├── am
// └── s
// └── t
// It requires to split "st" node.
// 1. Create a "t" node from "st" reference.
// 2. Create a new "s" node for "tes" key and link it to the child "t" node.
// 3. Update the "te" (parent) reference to the new "s" node (we are swapping old "st" to new "s" node, first
// char remain the same).
keyCharsFromStartOfNodeFound := path[result.charsMatched-result.charsMatchedInNodeFound:]
cPrefix := commonPrefix(keyCharsFromStartOfNodeFound, result.matched.key)
suffixFromExistingEdge := strings.TrimPrefix(result.matched.key, cPrefix)
child := newNodeFromRef(
suffixFromExistingEdge,
result.matched.route,
result.matched.children,
result.matched.childKeys,
result.matched.catchAllKey,
result.matched.paramChildIndex,
)
parent := newNode(
cPrefix,
route,
[]*node{child},
catchAllKey,
)
t.updateMaxParams(paramsN)
t.updateMaxDepth(result.depth + 1)
result.p.updateEdge(parent)
case incompleteMatchToEndOfEdge:
// e.g. matched until "st" for "st" node but still have remaining char (ify) when inserting "testify" key.
// te
// ├── st
// └── am
//
// After patching
// te
// ├── am
// └── st
// └── ify
// 1. Create a new "ify" child node.
// 2. Recreate the "st" node and link it to it's existing children and the new "ify" node.
// 3. Update the "te" (parent) node to the new "st" node.
keySuffix := path[result.charsMatched:]
// No children, so no paramChild
child := newNode(keySuffix, route, nil, catchAllKey)
edges := result.matched.getEdgesShallowCopy()
edges = append(edges, child)
n := newNode(
result.matched.key,
result.matched.route,
edges,
result.matched.catchAllKey,
)
t.updateMaxDepth(result.depth + 1)
t.updateMaxParams(paramsN)
if result.matched == rootNode {
n.key = method
n.paramChildIndex = -1
t.updateRoot(n)
break
}
result.p.updateEdge(n)
case incompleteMatchToMiddleOfEdge:
// e.g. matched until "s" for "st" node but still have remaining char ("s") which does not match anything
// when inserting "tess" key.
// te
// ├── st
// └── am
//
// After patching
// te
// ├── am
// └── s
// ├── s
// └── t
// It requires to split "st" node.
// 1. Create a new "s" child node for "tess" key.
// 2. Create a new "t" node from "st" reference (link "st" children to new "t" node).
// 3. Create a new "s" node and link it to "s" and "t" node.
// 4. Update the "te" (parent) node to the new "s" node (we are swapping old "st" to new "s" node, first
// char remain the same).
keyCharsFromStartOfNodeFound := path[result.charsMatched-result.charsMatchedInNodeFound:]
cPrefix := commonPrefix(keyCharsFromStartOfNodeFound, result.matched.key)
// Rule: a node with {param} has no child or has a separator before the end of the key
for i := len(cPrefix) - 1; i >= 0; i-- {
if cPrefix[i] == '/' {
break
}
if cPrefix[i] == '{' {
return newConflictErr(method, path, catchAllKey, getRouteConflict(result.matched))
}
}
suffixFromExistingEdge := strings.TrimPrefix(result.matched.key, cPrefix)
keySuffix := path[result.charsMatched:]
// No children, so no paramChild
n1 := newNodeFromRef(keySuffix, route, nil, nil, catchAllKey, -1) // inserted node
n2 := newNodeFromRef(
suffixFromExistingEdge,
result.matched.route,
result.matched.children,
result.matched.childKeys,
result.matched.catchAllKey,
result.matched.paramChildIndex,
) // previous matched node
// n3 children never start with a param
n3 := newNode(cPrefix, nil, []*node{n1, n2}, "") // intermediary node
t.updateMaxDepth(result.depth + 1)
t.updateMaxParams(paramsN)
result.p.updateEdge(n3)
default:
// safeguard against introducing a new result type
panic("internal error: unexpected result type")
}
return nil
}
// update is not safe for concurrent use.
func (t *Tree) update(method string, path, catchAllKey string, route *Route) error {
// Note that we need a consistent view of the tree during the patching so search must imperatively be locked.
if !t.race.CompareAndSwap(0, 1) {
panic(ErrConcurrentAccess)
}
defer t.race.Store(0)
nds := *t.nodes.Load()
index := findRootNode(method, nds)
if index < 0 {
return fmt.Errorf("%w: route %s %s is not registered", ErrRouteNotFound, method, path)
}
result := t.search(nds[index], path)
if !result.isExactMatch() || !result.matched.isLeaf() {
return fmt.Errorf("%w: route %s %s is not registered", ErrRouteNotFound, method, path)
}
if catchAllKey != result.matched.catchAllKey {
err := newConflictErr(method, path, catchAllKey, []string{result.matched.route.path})
err.isUpdate = true
return err
}
// We are updating an existing node (could be a leaf or not). We only need to create a new node from
// the matched one with the updated/added value (handler and wildcard).
n := newNodeFromRef(
result.matched.key,
route,
result.matched.children,
result.matched.childKeys,
catchAllKey,
result.matched.paramChildIndex,
)
result.p.updateEdge(n)
return nil
}
// remove is not safe for concurrent use.
func (t *Tree) remove(method, path, catchAllKey string) bool {
// Note that we need a consistent view of the tree during the patching so search must imperatively be locked.
if !t.race.CompareAndSwap(0, 1) {
panic(ErrConcurrentAccess)
}
defer t.race.Store(0)
nds := *t.nodes.Load()
index := findRootNode(method, nds)
if index < 0 {
return false
}
result := t.search(nds[index], path)
if result.classify() != exactMatch || catchAllKey != result.matched.catchAllKey {
return false
}
// This node was created after a split (KEY_END_MID_EGGE operation), therefore we cannot delete
// this node.
if !result.matched.isLeaf() {
return false
}
if len(result.matched.children) > 1 {
n := newNodeFromRef(
result.matched.key,
nil,
result.matched.children,
result.matched.childKeys,
"",
result.matched.paramChildIndex,
)
result.p.updateEdge(n)
return true
}
if len(result.matched.children) == 1 {
child := result.matched.get(0)
mergedPath := fmt.Sprintf("%s%s", result.matched.key, child.key)
n := newNodeFromRef(
mergedPath,
child.route,
child.children,
child.childKeys,
child.catchAllKey,
child.paramChildIndex,
)
result.p.updateEdge(n)
return true
}
// recreate the parent edges without the removed node
parentEdges := make([]*node, len(result.p.children)-1)
added := 0
for i := 0; i < len(result.p.children); i++ {
n := result.p.get(i)
if n != result.matched {
parentEdges[added] = n
added++
}
}
parentIsRoot := result.p == nds[index]
var parent *node
if len(parentEdges) == 1 && !result.p.isLeaf() && !parentIsRoot {
child := parentEdges[0]
mergedPath := fmt.Sprintf("%s%s", result.p.key, child.key)
parent = newNodeFromRef(
mergedPath,
child.route,
child.children,
child.childKeys,
child.catchAllKey,
child.paramChildIndex,
)
} else {
parent = newNode(
result.p.key,
result.p.route,
parentEdges,
result.p.catchAllKey,
)
}
if parentIsRoot {
if len(parent.children) == 0 && isRemovable(method) {
return t.removeRoot(method)
}
parent.key = method
parent.paramChildIndex = -1
t.updateRoot(parent)
return true
}
result.pp.updateEdge(parent)
return true
}
const (
slashDelim = '/'
bracketDelim = '{'
)
func (t *Tree) lookup(rootNode *node, path string, c *cTx, lazy bool) (n *node, tsr bool) {
if len(rootNode.children) == 0 {
return nil, false
}
var (
charsMatched int
charsMatchedInNodeFound int
paramCnt uint32
paramKeyCnt uint32
parent *node
)
current := rootNode.children[0].Load()
*c.skipNds = (*c.skipNds)[:0]
Walk:
for charsMatched < len(path) {
charsMatchedInNodeFound = 0
for i := 0; charsMatched < len(path); i++ {
if i >= len(current.key) {
break
}
if current.key[i] != path[charsMatched] || path[charsMatched] == bracketDelim {
if current.key[i] == '{' {
startPath := charsMatched
idx := strings.IndexByte(path[charsMatched:], slashDelim)
if idx > 0 {
// There is another path segment (e.g. /foo/{bar}/baz)
charsMatched += idx
} else if idx < 0 {
// This is the end of the path (e.g. /foo/{bar})
charsMatched += len(path[charsMatched:])
} else {
// segment is empty
break Walk
}
idx = current.params[paramKeyCnt].end - charsMatchedInNodeFound
if idx >= 0 {
// -1 since on the next incrementation, if any, 'i' are going to be incremented
i += idx - 1
charsMatchedInNodeFound += idx
} else {
// -1 since on the next incrementation, if any, 'i' are going to be incremented
i += len(current.key[charsMatchedInNodeFound:]) - 1
charsMatchedInNodeFound += len(current.key[charsMatchedInNodeFound:])
}
if !lazy {
paramCnt++
*c.params = append(*c.params, Param{Key: current.params[paramKeyCnt].key, Value: path[startPath:charsMatched]})
}
paramKeyCnt++
continue
}
break Walk
}
charsMatched++
charsMatchedInNodeFound++
}
if charsMatched < len(path) {
// linear search
idx := -1
for i := 0; i < len(current.childKeys); i++ {
if current.childKeys[i] == path[charsMatched] {
idx = i
break
}
}
// Only one node which is a child param, load it directly and go deeper
if idx < 0 {
if current.paramChildIndex < 0 {
break
}
// The node is also a catch-all, save it as the last fallback.
if current.catchAllKey != "" {
*c.skipNds = append(*c.skipNds, skippedNode{current, charsMatched, paramCnt, true})
}
idx = current.paramChildIndex
parent = current
current = current.children[idx].Load()
paramKeyCnt = 0
continue
}
// Save the node if we need to evaluate the child param or catch-all later
if current.paramChildIndex >= 0 || current.catchAllKey != "" {
*c.skipNds = append(*c.skipNds, skippedNode{current, charsMatched, paramCnt, false})
}
parent = current
current = current.children[idx].Load()
paramKeyCnt = 0
}
}
paramCnt = 0
paramKeyCnt = 0
hasSkpNds := len(*c.skipNds) > 0
if !current.isLeaf() {
if !tsr {
// Tsr recommendation: remove the extra trailing slash (got an exact match)
// If match the completely /foo/, we end up in an intermediary node which is not a leaf.
// /foo [leaf=/foo]
// /
// b/ [leaf=/foo/b/]
// x/ [leaf=/foo/x/]
// But the parent (/foo) could be a leaf. This is only valid if we have an exact match with
// the intermediary node (charsMatched == len(path)).
if strings.HasSuffix(path, "/") && parent != nil && parent.isLeaf() && charsMatched == len(path) {
tsr = true
n = parent
// Save also a copy of the matched params, it should not allocate anything in most case.
if !lazy {
if cap(*c.params) > cap(*c.tsrParams) {
// Grow c.tsrParams to a least cap(c.params)
*c.tsrParams = slices.Grow(*c.tsrParams, cap(*c.params))
}
// cap(c.tsrParams) >= cap(c.params)
// now constraint into len(c.params) & cap(c.params)
*c.tsrParams = (*c.tsrParams)[:len(*c.params):cap(*c.params)]
copy(*c.tsrParams, *c.params)
}
}
}
if hasSkpNds {
goto Backtrack
}
return n, tsr
}
// From here we are always in a leaf
if charsMatched == len(path) {
if charsMatchedInNodeFound == len(current.key) {
// Exact match, note that if we match a catch-all node
if !lazy && current.catchAllKey != "" {
*c.params = append(*c.params, Param{Key: current.catchAllKey, Value: path[charsMatched:]})
// Exact match, tsr is always false
return current, false
}
// Exact match, tsr is always false
return current, false
}
if charsMatchedInNodeFound < len(current.key) {
// Key end mid-edge
if !tsr {
if strings.HasSuffix(path, "/") {
// Tsr recommendation: remove the extra trailing slash (got an exact match)
remainingPrefix := current.key[:charsMatchedInNodeFound]
if len(remainingPrefix) == 1 && remainingPrefix[0] == slashDelim {
tsr = true
n = parent
// Save also a copy of the matched params, it should not allocate anything in most case.
if !lazy {
if cap(*c.params) > cap(*c.tsrParams) {
// Grow c.tsrParams to a least cap(c.params)
*c.tsrParams = slices.Grow(*c.tsrParams, cap(*c.params))
}
// cap(c.tsrParams) >= cap(c.params)
// now constraint into len(c.params) & cap(c.params)
*c.tsrParams = (*c.tsrParams)[:len(*c.params):cap(*c.params)]
copy(*c.tsrParams, *c.params)
}
}
} else {
// Tsr recommendation: add an extra trailing slash (got an exact match)
remainingSuffix := current.key[charsMatchedInNodeFound:]
if len(remainingSuffix) == 1 && remainingSuffix[0] == slashDelim {
tsr = true
n = current
// Save also a copy of the matched params, it should not allocate anything in most case.
if !lazy {
if cap(*c.params) > cap(*c.tsrParams) {
// Grow c.tsrParams to a least cap(c.params)
*c.tsrParams = slices.Grow(*c.tsrParams, cap(*c.params))
}
// cap(c.tsrParams) >= cap(c.params)
// now constraint into len(c.params) & cap(c.params)
*c.tsrParams = (*c.tsrParams)[:len(*c.params):cap(*c.params)]
copy(*c.tsrParams, *c.params)
}
}
}
}
if hasSkpNds {
goto Backtrack
}
return n, tsr
}
}
// Incomplete match to end of edge
if charsMatched < len(path) && charsMatchedInNodeFound == len(current.key) {
if current.catchAllKey != "" {
if !lazy {
*c.params = append(*c.params, Param{Key: current.catchAllKey, Value: path[charsMatched:]})
// Same as exact match, no tsr recommendation
return current, false
}
// Same as exact match, no tsr recommendation
return current, false
}
// Tsr recommendation: remove the extra trailing slash (got an exact match)
if !tsr {
remainingKeySuffix := path[charsMatched:]
if len(remainingKeySuffix) == 1 && remainingKeySuffix[0] == slashDelim {
tsr = true
n = current
// Save also a copy of the matched params, it should not allocate anything in most case.
if !lazy {
if cap(*c.params) > cap(*c.tsrParams) {
// Grow c.tsrParams to a least cap(c.params)
*c.tsrParams = slices.Grow(*c.tsrParams, cap(*c.params))
}
// cap(c.tsrParams) >= cap(c.params)
// now constraint into len(c.params) & cap(c.params)
*c.tsrParams = (*c.tsrParams)[:len(*c.params):cap(*c.params)]
copy(*c.tsrParams, *c.params)
}
}
}
if hasSkpNds {
goto Backtrack
}
return n, tsr
}
// Finally incomplete match to middle of edge
Backtrack:
if hasSkpNds {
skipped := c.skipNds.pop()
if skipped.n.paramChildIndex < 0 || skipped.seen {
// skipped is catch all
current = skipped.n
*c.params = (*c.params)[:skipped.paramCnt]
if !lazy {
*c.params = append(*c.params, Param{Key: current.catchAllKey, Value: path[skipped.pathIndex:]})
// Same as exact match, no tsr recommendation
return current, false
}
// Same as exact match, no tsr recommendation
return current, false
}
// Could be a catch-all node with child param
// /foo/*{any}
// /foo/{bar}
// In this case we evaluate first the child param node and fall back to the catch-all.
if skipped.n.catchAllKey != "" {
*c.skipNds = append(*c.skipNds, skippedNode{skipped.n, skipped.pathIndex, skipped.paramCnt, true})
}
parent = skipped.n
current = skipped.n.children[skipped.n.paramChildIndex].Load()
*c.params = (*c.params)[:skipped.paramCnt]
charsMatched = skipped.pathIndex
goto Walk
}
return n, tsr
}
func (t *Tree) search(rootNode *node, path string) searchResult {
current := rootNode
var (
pp *node
p *node
charsMatched int
charsMatchedInNodeFound int
depth uint32
)
STOP:
for charsMatched < len(path) {
next := current.getEdge(path[charsMatched])
if next == nil {
break STOP
}
depth++
pp = p
p = current
current = next
charsMatchedInNodeFound = 0
for i := 0; charsMatched < len(path); i++ {
if i >= len(current.key) {
break
}
if current.key[i] != path[charsMatched] {
break STOP
}
charsMatched++
charsMatchedInNodeFound++
}
}
return searchResult{
path: path,
matched: current,
charsMatched: charsMatched,
charsMatchedInNodeFound: charsMatchedInNodeFound,
p: p,
pp: pp,
depth: depth,
}
}
func (t *Tree) allocateContext() *cTx {
maxParams := t.maxParams.Load()
params := make(Params, 0, maxParams)
tsrParams := make(Params, 0, maxParams)
skipNds := make(skippedNodes, 0, t.maxDepth.Load())
return &cTx{
params: ¶ms,
skipNds: &skipNds,
tsrParams: &tsrParams,
// This is a read only value, no reset, it's always the
// owner of the pool.
tree: t,
// This is a read only value, no reset.
fox: t.fox,
}
}
// addRoot append a new root node to the tree.
// Note: This function should be guarded by mutex.
func (t *Tree) addRoot(n *node) {
nds := *t.nodes.Load()
newNds := make([]*node, 0, len(nds)+1)
newNds = append(newNds, nds...)
newNds = append(newNds, n)
t.nodes.Store(&newNds)
}
// updateRoot replaces a root node in the tree.
// Due to performance optimization, the tree uses atomic.Pointer[[]*node] instead of
// atomic.Pointer[atomic.Pointer[*node]]. As a result, the root node cannot be replaced
// directly by swapping the pointer. Instead, a new list of nodes is created with the
// updated root node, and the entire list is swapped afterwards.
// Note: This function should be guarded by mutex.
func (t *Tree) updateRoot(n *node) bool {
nds := *t.nodes.Load()
// for root node, the key contains the HTTP verb.
index := findRootNode(n.key, nds)
if index < 0 {
return false
}
newNds := make([]*node, 0, len(nds))
newNds = append(newNds, nds[:index]...)
newNds = append(newNds, n)
newNds = append(newNds, nds[index+1:]...)
t.nodes.Store(&newNds)
return true
}
// removeRoot remove a root nod from the tree.
// Note: This function should be guarded by mutex.
func (t *Tree) removeRoot(method string) bool {
nds := *t.nodes.Load()
index := findRootNode(method, nds)
if index < 0 {
return false
}
newNds := make([]*node, 0, len(nds)-1)
newNds = append(newNds, nds[:index]...)
newNds = append(newNds, nds[index+1:]...)
t.nodes.Store(&newNds)
return true
}
// updateMaxParams perform an update only if max is greater than the current
// max params. This function should be guarded by mutex.
func (t *Tree) updateMaxParams(max uint32) {
if max > t.maxParams.Load() {
t.maxParams.Store(max)
}
}
// updateMaxDepth perform an update only if max is greater than the current
// max depth. This function should be guarded my mutex.
func (t *Tree) updateMaxDepth(max uint32) {
if max > t.maxDepth.Load() {
t.maxDepth.Store(max)
}
}
// newRoute create a new route, apply path options and apply middleware on the handler.
func (t *Tree) newRoute(path string, handler HandlerFunc, opts ...PathOption) *Route {
rte := &Route{
ipStrategy: t.fox.ipStrategy,
hbase: handler,
path: path,
mws: t.fox.mws,
redirectTrailingSlash: t.fox.redirectTrailingSlash,
ignoreTrailingSlash: t.fox.ignoreTrailingSlash,
}
for _, opt := range opts {
opt.applyPath(rte)
}
rte.hself, rte.hall = applyRouteMiddleware(rte.mws, handler)
return rte
}