forked from behretj/3D-Scene-Understanding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraytracing.py
172 lines (122 loc) · 5.37 KB
/
raytracing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import open3d as o3d
import numpy as np
import json
import matplotlib.pyplot as plt
def parse_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
intrinsics = np.array(data["intrinsics"]).reshape((3, 3))
camera_pose = np.array(data["cameraPoseARFrame"]).reshape((4, 4))
R = camera_pose[:3, :3]
t = camera_pose[:3, 3]
extrinsics = np.eye(4)
extrinsics[:3, :3] = R
extrinsics[:3, 3] = t
return intrinsics, extrinsics
# Main workflow
json_file_path = "/home/tjark/Documents/growing_scene_graphs/SceneGraph-Dataset/iPad-Scan-1/frame_00359.json"
obj_file_path = "/home/tjark/Documents/growing_scene_graphs/SceneGraph-Dataset/iPad-Scan-1/export.obj"
# bbox = np.load("tmp/bboxes.npy")[0]
# image = np.load("tmp/image.npy")
intrinsics, extrinsics = parse_json(json_file_path)
extrinsics = np.linalg.inv(extrinsics)
# R = extrinsics[:3, :3] # Rotation part
# t = extrinsics[:3, 3] # Translation part
# print("Intrinsic Matrix:\n", intrinsics)
# print("Extrinsic Matrix:\n", extrinsics)
mesh = o3d.io.read_triangle_mesh(obj_file_path)
mesh = o3d.t.geometry.TriangleMesh.from_legacy(mesh)
# image_width, image_height = image.shape[1], image.shape[0]
scene = o3d.t.geometry.RaycastingScene()
_ = scene.add_triangles(mesh)
intrinsic_tensor = o3d.core.Tensor(intrinsics, dtype=o3d.core.Dtype.Float32)
extrinsic_tensor = o3d.core.Tensor(extrinsics, dtype=o3d.core.Dtype.Float32)
# Use the intrinsic and extrinsic tensors to create rays
rays = o3d.t.geometry.RaycastingScene.create_rays_pinhole(
intrinsic_tensor, extrinsic_tensor, 1920, 1440
)
# R = extrinsics[:3, :3]
# t = extrinsics[:3, 3]
# # Inverse of the intrinsic matrix
# invK = np.linalg.inv(intrinsics)
# # Array to store the viewing directions
# viewing_directions = np.zeros((image_height, image_width, 3), dtype=np.float32)
# R_180_y = np.array([
# [-1, 0, 0],
# [0, 1, 0],
# [0, 0, -1]
# ])
# for y in range(image_height):
# for x in range(image_width):
# px = np.array([x + 0.5, y + 0.5, 1.0], dtype=np.float32)
# normalized_camera_coords = np.dot(invK, px)
# # rotated_camera_coords = np.dot(R_180_y, normalized_camera_coords)
# # normalized_camera_coords[2] = -normalized_camera_coords[2]
# world_coords_direction = np.dot(R.T, normalized_camera_coords)
# world_coords_direction /= np.linalg.norm(world_coords_direction)
# viewing_directions[y, x] = world_coords_direction
# translation_vectors = np.tile(t, (image_height*image_width, 1))
# translation_vectors = translation_vectors.reshape(image_height, image_width, 3)
# rays = np.block([translation_vectors, viewing_directions])
# rays[:, :, 5] = -rays[:, :, 5]
# # for DEBUGGING: visualize the rays
# ray = rays[0, 0]
# ray_origin = ray[:3]
# ray_direction = ray[3:]
# ray_end = ray_origin + ray_direction * 10
# line_set = o3d.geometry.LineSet()
# points = [ray_origin, ray_end]
# lines = [[0, 1]]
# colors = [[1, 0, 0]] # Red color for the ray
# line_set.points = o3d.utility.Vector3dVector(points)
# line_set.lines = o3d.utility.Vector2iVector(lines)
# line_set.colors = o3d.utility.Vector3dVector(colors)
# ray_direction[2] = -ray_direction[2]
# ray_end2 = ray_origin + ray_direction * 10
# line_set2 = o3d.geometry.LineSet()
# points2 = [ray_origin, ray_end2]
# lines2 = [[0, 1]]
# colors2 = [[1, 0, 0]] # Red color for the ray
# line_set2.points = o3d.utility.Vector3dVector(points2)
# line_set2.lines = o3d.utility.Vector2iVector(lines2)
# line_set2.colors = o3d.utility.Vector3dVector(colors2)
# mesh_frame1 = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.4, origin=[0, 0, 0])
# mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.4, origin=[0, 0, 0])
# mesh_frame.transform(extrinsics)
# o3d.visualization.draw_geometries([mesh.to_legacy(), line_set, line_set2, mesh_frame, mesh_frame1])
# image creation
ans = scene.cast_rays(rays)
plt.imshow(ans['t_hit'].numpy())
plt.gca().invert_yaxis()
plt.savefig("raycasting.png")
print("whats going on")
plt.close()
def create_rays_pinhole(fov_deg, center, eye, up, width_px, height_px):
# Compute focal length
focal_length = 0.5 * width_px / np.tan(0.5 * (np.pi/180) * fov_deg)
# focal_length = 0.5 * width_px / np.tan(0.5 * np.radians(fov_deg))
# Create intrinsic matrix
intrinsic_matrix = np.eye(3, dtype=np.float64)
intrinsic_matrix[0, 0] = focal_length
intrinsic_matrix[1, 1] = focal_length
intrinsic_matrix[0, 2] = 0.5 * width_px
intrinsic_matrix[1, 2] = 0.5 * height_px
R = np.eye(3, dtype=np.float64)
R[1, :] = up / np.linalg.norm(up)
R[2, :] = center - eye
R[2, :] = R[2, :] / np.linalg.norm(R[2, :])
R[0, :] = np.cross(R[1, :], R[2, :])
R[0, :] = R[0, :] / np.linalg.norm(R[0, :])
R[1, :] = np.cross(R[2, :], R[0, :])
t = eye
extrinsic_matrix = np.eye(4, dtype=np.float64)
extrinsic_matrix[:3, :3] = R.T
extrinsic_matrix[:3, 3] = t
# # Convert to Open3D tensors
# intrinsic_tensor = o3d.core.Tensor(intrinsic_matrix, dtype=o3d.core.Dtype.Float64)
# extrinsic_tensor = o3d.core.Tensor(extrinsic_matrix, dtype=o3d.core.Dtype.Float64)
# # Use the intrinsic and extrinsic tensors to create rays
# rays = o3d.t.geometry.RaycastingScene.create_rays_pinhole(
# intrinsic_tensor, extrinsic_tensor, width_px, height_px
# )
return intrinsic_matrix, extrinsic_matrix