-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodels.py
209 lines (167 loc) · 7.73 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class Normalize(nn.Module):
def __init__(self, mu, std):
super(Normalize, self).__init__()
self.mu, self.std = mu, std
def forward(self, x):
return (x - self.mu) / self.std
class ReluWithStats(nn.Module):
def __init__(self):
super(ReluWithStats, self).__init__()
self.collect_preact = True
self.avg_preacts = []
def forward(self, preact):
if self.collect_preact:
self.avg_preacts.append(preact.abs().mean().item())
act = F.relu(preact)
return act
class ModuleWithStats(nn.Module):
def __init__(self):
super(ModuleWithStats, self).__init__()
def forward(self, x):
for layer in self._model:
if type(layer) == ReluWithStats:
layer.avg_preacts = []
out = self._model(x)
avg_preacts_all = [layer.avg_preacts for layer in self._model if type(layer) == ReluWithStats]
self.avg_preact = np.mean(avg_preacts_all)
return out
class CNNBase(ModuleWithStats):
""" Just needed to provide a generic implementation of calc_distances_hl1(self, X) """
def __init__(self):
super(CNNBase, self).__init__()
def calc_distances_hl1(self, X):
conv1 = self._model[0].weight
first_conv_norm_channelwise = conv1.abs().sum((1, 2, 3)) # note: l1 distance is implemented!
# when w==0 and b==0
first_conv_norm_channelwise[first_conv_norm_channelwise + self._model[0].bias.abs() < 1e-6] = np.nan
distances = self.model_preact_hl1(X).abs() / first_conv_norm_channelwise[None, :, None, None]
distances = distances.view(X.shape[0], -1)
return distances
class CNN(CNNBase):
def __init__(self, n_cls, shape_in, n_conv, n_filters):
super(CNN, self).__init__()
input_size = shape_in[2]
conv_blocks = []
for i_layer in range(n_conv):
n_in = shape_in[1] if i_layer == 0 else n_filters
n_out = n_filters
conv_blocks += [nn.Conv2d(n_in, n_out, 3, stride=1, padding=1), ReluWithStats()]
h_after_conv, w_after_conv = input_size, input_size
self._model = nn.Sequential(
*conv_blocks,
Flatten(),
nn.Linear(n_filters*h_after_conv*w_after_conv, n_cls)
)
self.model_preact_hl1 = nn.Sequential(self._model[0])
class IdentityLayer(nn.Module):
def forward(self, inputs):
return inputs
class PreActBlock(nn.Module):
'''Pre-activation version of the BasicBlock.'''
expansion = 1
def __init__(self, in_planes, planes, bn, learnable_bn, stride=1):
super(PreActBlock, self).__init__()
self.collect_preact = True
self.avg_preacts = []
self.bn1 = nn.BatchNorm2d(in_planes, affine=learnable_bn) if bn else IdentityLayer()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=not learnable_bn)
self.bn2 = nn.BatchNorm2d(planes, affine=learnable_bn) if bn else IdentityLayer()
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=not learnable_bn)
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=not learnable_bn)
)
def relu_with_stats(self, preact):
if self.collect_preact:
self.avg_preacts.append(preact.abs().mean().item())
act = F.relu(preact)
return act
def forward(self, x):
out = self.relu_with_stats(self.bn1(x))
shortcut = self.shortcut(x) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(self.relu_with_stats(self.bn2(out)))
out += shortcut
return out
class PreActResNet(nn.Module):
def __init__(self, block, num_blocks, n_cls, cuda=True, half_prec=False):
super(PreActResNet, self).__init__()
self.bn = True
self.learnable_bn = True # doesn't matter if self.bn=False
self.in_planes = 64
self.avg_preact = None
# self.mu = torch.tensor((0.4914, 0.4822, 0.4465)).view(1, 3, 1, 1).cuda()
# self.std = torch.tensor((0.2471, 0.2435, 0.2616)).view(1, 3, 1, 1).cuda()
self.mu = torch.tensor((0.0, 0.0, 0.0)).view(1, 3, 1, 1)
self.std = torch.tensor((1.0, 1.0, 1.0)).view(1, 3, 1, 1)
if cuda:
self.mu = self.mu.cuda()
self.std = self.std.cuda()
if half_prec:
self.mu = self.mu.half()
self.std = self.std.half()
self.normalize = Normalize(self.mu, self.std)
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=not self.learnable_bn)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, n_cls)
layers = [self.normalize, self.conv1, self.layer1[0].bn1]
self.model_preact_hl1 = nn.Sequential(*layers)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, self.bn, self.learnable_bn, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def calc_distances_hl1(self, X):
bn1 = self.layer1[0].bn1
weight_full = self.conv1.weight * bn1.weight.view(-1, 1, 1, 1) / (self.std * (bn1.running_var.view(-1, 1, 1, 1) + bn1.eps)**0.5)
first_conv_norm_channelwise = weight_full.abs().sum((1, 2, 3)) # note: l1 distance is implemented!
first_conv_norm_channelwise[first_conv_norm_channelwise < 1e-6] = np.nan
distances = self.model_preact_hl1(X).abs() / first_conv_norm_channelwise[None, :, None, None]
distances = distances.view(X.shape[0], -1)
# # Sanity check
# X.requires_grad = True
# preact = self.model_preact_hl1(X)[:, 0, 10, 10].sum() # for a unit sufficiently far from the boundary
# grad = torch.autograd.grad(preact, X)[0]
# grad_norm = grad.view(X.shape[0], -1).abs().sum(1)
# print(grad_norm)
# assert (first_conv_norm_channelwise[0] - grad_norm[0]).abs().item() < 1e-6
return distances
def forward(self, x):
for layer in [*self.layer1, *self.layer2, *self.layer3, *self.layer4]:
layer.avg_preacts = []
x = self.normalize(x)
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
avg_preacts_all = []
for layer in [*self.layer1, *self.layer2, *self.layer3, *self.layer4]:
avg_preacts_all += layer.avg_preacts
self.avg_preact = np.mean(avg_preacts_all)
return out
def PreActResNet18(n_cls, cuda=True, half_prec=False):
return PreActResNet(PreActBlock, [2, 2, 2, 2], n_cls=n_cls, cuda=cuda, half_prec=half_prec)
def get_model(model_name, n_cls, half_prec, shapes_dict, n_filters_cnn):
if model_name == 'resnet18':
model = PreActResNet18(n_cls, half_prec=half_prec)
elif model_name == 'cnn':
model = CNN(n_cls, shapes_dict, 1, n_filters_cnn)
else:
raise ValueError('wrong model')
return model