diff --git a/examples/train_ddpm.py b/examples/train_ddpm.py new file mode 100644 index 000000000000..77618ed469fb --- /dev/null +++ b/examples/train_ddpm.py @@ -0,0 +1,83 @@ +import argparse +import logging +import os +from pathlib import Path + +import torch +from torch.utils.data import DataLoader +from torchvision import transforms +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import set_seed + +from diffusers import DDPMPipeline, DDPMScheduler +from diffusers.models.ddpm_model import DDPMModel + +logger = get_logger(__name__, log_level="INFO") + + +def parse_args(): + parser = argparse.ArgumentParser() + parser.add_argument("--pretrained_model_name_or_path", type=str, required=True, + help="Path to pretrained model or model identifier from huggingface.co/models.") + parser.add_argument("--output_dir", type=str, default="ddpm_training", + help="The output directory where the model predictions and checkpoints will be written.") + parser.add_argument("--train_batch_size", type=int, default=16, help="Batch size for the training dataloader.") + parser.add_argument("--learning_rate", type=float, default=0.0001, help="Initial learning rate.") + parser.add_argument("--max_train_steps", type=int, default=1000, help="Total number of training steps.") + parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") + return parser.parse_args() + + +def main(args): + if args.seed is not None: + set_seed(args.seed) + + accelerator = Accelerator() + + if accelerator.is_main_process: + os.makedirs(args.output_dir, exist_ok=True) + + # Initialize model and scheduler + unet = ... # Initialize UNet model + scheduler = DDPMScheduler() + model = DDPMModel(unet=unet, scheduler=scheduler) + + # Prepare optimizer + optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate) + + # Prepare data + transform = transforms.Compose([ + transforms.Resize((64, 64)), + transforms.ToTensor(), + ]) + dataset = ... # Load your dataset here + dataloader = DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True) + + # Training loop + for step in range(args.max_train_steps): + for batch in dataloader: + # Forward diffusion + x_0 = batch["image"].to(accelerator.device) + timesteps = torch.randint(0, scheduler.num_train_timesteps, (x_0.size(0),), device=accelerator.device) + loss = model.forward_diffusion(x_0, timesteps) + + # Backward pass + accelerator.backward(loss) + optimizer.step() + optimizer.zero_grad() + + if step % 100 == 0: + logger.info(f"Step {step}: loss = {loss.item()}") + + if step >= args.max_train_steps: + break + + # Save the model + if accelerator.is_main_process: + model.save_pretrained(args.output_dir) + + +if __name__ == "__main__": + args = parse_args() + main(args) \ No newline at end of file diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py index f0dd7248c117..9cfe5801f664 100644 --- a/src/diffusers/models/__init__.py +++ b/src/diffusers/models/__init__.py @@ -35,6 +35,7 @@ _import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"] _import_structure["autoencoders.vq_model"] = ["VQModel"] _import_structure["controlnet"] = ["ControlNetModel"] + _import_structure["ddpm_model"] = ["DDPMModel"] _import_structure["controlnet_flux"] = ["FluxControlNetModel", "FluxMultiControlNetModel"] _import_structure["controlnet_hunyuan"] = ["HunyuanDiT2DControlNetModel", "HunyuanDiT2DMultiControlNetModel"] _import_structure["controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"] @@ -134,4 +135,4 @@ else: import sys - sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) \ No newline at end of file diff --git a/src/diffusers/models/ddpm_model.py b/src/diffusers/models/ddpm_model.py new file mode 100644 index 000000000000..761e8d313988 --- /dev/null +++ b/src/diffusers/models/ddpm_model.py @@ -0,0 +1,19 @@ +import torch +from diffusers import DDPMPipeline, DDPMScheduler + +class DDPMModel: + def __init__(self, unet, scheduler): + self.unet = unet + self.scheduler = scheduler + + def forward_diffusion(self, x_0, timesteps): + # Implement forward diffusion process + pass + + def denoise(self, x_t, timesteps): + # Implement denoising process + pass + + def generate(self, batch_size=1, num_inference_steps=1000, output_type="pil"): + # Implement image generation process + pass \ No newline at end of file