-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimtel_to_hdf5.py
389 lines (345 loc) · 19.2 KB
/
simtel_to_hdf5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from ctapipe.io.hessio import hessio_event_source
from ctapipe.calib.camera.r1 import HessioR1Calibrator
from ctapipe.calib.camera.dl0 import CameraDL0Reducer
import pandas as pd
import sys
import os
import pickle
import numpy as np
import h5py
import time
from tqdm import tqdm
from astropy import units as u
from matplotlib import use
use('Agg')
import matplotlib.pyplot as plt
def string_len(string, length):
string = str(string)
ersetzung = " "
if length == 2:
ersetzung = "0"
if len(string) < length:
string = ersetzung + string
return string
def get_num_filename(argv):
Filename = "../Master_Daten/PROD3/LaPalma/gamma/gamma_20deg_0deg_run2___cta-prod3-lapalma3-2147m-LaPalma.simtel.gz"
nummer = "6"
if len(sys.argv) == 3:
nummer = sys.argv[1]
Filename = sys.argv[2]
return nummer, Filename
def set_right_tel(Filename, File_extension):
right_tel = []
try:
g
return pickle.load(open("right_tel.pickle", "rb"))
except:
right_tel = []
source = hessio_event_source(Filename, max_events=1)
Anzahl = 0
anzahl_cut = 0
Camera_infos = {}
for event in source:
for tel_id in event.inst.telescope_ids:
Name = event.inst.subarray.tels[tel_id].optics.tel_type + "_" + event.inst.subarray.tels[tel_id].optics.mirror_type + "_" + str(event.inst.subarray.tel[tel_id].camera)
# Name = "bla"
if Name not in Camera_infos:
Camera_infos[Name] = {"x": [], "y": [], "Anzahl": []}
x_pos = event.inst.subarray.positions[tel_id][0].value
y_pos = event.inst.subarray.positions[tel_id][1].value
drinne = False
for i in range(len(Camera_infos[Name]["x"])):
if x_pos == Camera_infos[Name]["x"][i] and y_pos == Camera_infos[Name]["y"][i]:
Camera_infos[Name]["Anzahl"][i] += 1
drinne = True
break
if drinne is False:
Camera_infos[Name]["x"].append(event.inst.subarray.positions[tel_id][0].value)
Camera_infos[Name]["y"].append(event.inst.subarray.positions[tel_id][1].value)
Camera_infos[Name]["Anzahl"].append(1)
if event.inst.subarray.tels[tel_id].optics.tel_type == "MST" and event.inst.subarray.tels[tel_id].optics.mirror_type == "DC":
right_tel.append(tel_id)
'''
for tel_id in event.r0.tels_with_data:
Anzahl += 1
if event.inst.subarray.tels[tel_id].optics.tel_type == "MST":# and event.inst.subarray.tels[tel_id].optics.mirror_type == "DC":
if tel_id not in right_tel:
right_tel.append(tel_id)
anzahl_cut += 1
'''
'''
alpha = 1
for key in Camera_infos.keys():
print(key)
# plt.scatter(x, y, marker='o', c=rein_g)
print(Camera_infos[key]["Anzahl"])
plt.scatter(Camera_infos[key]["x"], Camera_infos[key]["y"], marker='o', c=Camera_infos[key]["Anzahl"])
alpha -= 0.25
plt.colorbar()
plt.title(Filename.split("/")[len(Filename.split("/")) - 1])
plt.xlabel(r"x/m")
plt.ylabel(r"y/m")
plt.tight_layout()
plt.legend(loc='best')
plt.savefig('Bilder/Map' + File_extension + '.pdf')
plt.clf()
'''
print(len(right_tel))
print(Anzahl)
print(anzahl_cut)
pickle.dump(right_tel, open("right_tel.pickle", "wb"))
return right_tel
def get_num_events(Filename, right_tel):
try:
source = hessio_event_source(Filename, allowed_tels=right_tel)
except:
os.exit(1)
num_events = 0
anzahl_gesamt = 0
image1 = 0
image2 = 0
for event in source:
num_events += 1
for tel_id in event.r0.tels_with_data:
anzahl_gesamt += 1
camera_art = str(event.inst.subarray.tel[tel_id].camera)
if camera_art == "FlashCam":
image1 += 1
else:
image2 += 1
if num_events == 25:
break
print(num_events)
print(anzahl_gesamt)
print(image1)
print(image2)
return num_events, image1, image2
def set_mc_header(event, hdf5):
gr_mc_header = hdf5.create_group("mc_header")
gr_mc_header.create_dataset("mc_spectral_index", data=np.array([event.mc.spectral_index]))
gr_mc_header.create_dataset("mc_obsheight", data=np.array([event.mc.obsheight]))
gr_mc_header.create_dataset("mc_num_showers", data=np.array([event.mc.num_showers]))
gr_mc_header.create_dataset("mc_num_use", data=np.array([event.mc.num_use]))
gr_mc_header.create_dataset("mc_core_pos_mode", data=np.array([event.mc.core_pos_mode]))
gr_mc_header.create_dataset("mc_core_range_X", data=np.array([event.mc.core_range_X]))
gr_mc_header.create_dataset("mc_core_range_Y", data=np.array([event.mc.core_range_Y]))
gr_mc_header.create_dataset("mc_alt_range_Min", data=np.array([event.mc.alt_range_Min]))
gr_mc_header.create_dataset("mc_alt_range_Max", data=np.array([event.mc.alt_range_Max]))
gr_mc_header.create_dataset("mc_az_range_Min", data=np.array([event.mc.az_range_Min]))
gr_mc_header.create_dataset("mc_az_range_Max", data=np.array([event.mc.az_range_Max]))
gr_mc_header.create_dataset("mc_viewcone_Min", data=np.array([event.mc.viewcone_Min]))
gr_mc_header.create_dataset("mc_viewcone_Max", data=np.array([event.mc.viewcone_Max]))
gr_mc_header.create_dataset("mc_E_range_Min", data=np.array([event.mc.E_range_Min]))
gr_mc_header.create_dataset("mc_E_range_Max", data=np.array([event.mc.E_range_Max]))
gr_mc_header.create_dataset("mc_diffuse", data=np.array([event.mc.mc_diffuse]))
gr_mc_header.create_dataset("mc_injection_height", data=np.array([event.mc.injection_height]))
gr_mc_header.create_dataset("B_total", data=np.array([event.mc.B_total]))
gr_mc_header.create_dataset("B_inclination", data=np.array([event.mc.B_inclination]))
gr_mc_header.create_dataset("B_declination", data=np.array([event.mc.B_declination]))
gr_mc_header.create_dataset("atmosphere", data=np.array([event.mc.atmosphere]))
gr_mc_header.create_dataset("corsika_iact_options", data=np.array([event.mc.corsika_iact_options]))
gr_mc_header.create_dataset("corsika_low_E_model", data=np.array([event.mc.corsika_low_E_model]))
gr_mc_header.create_dataset("corsika_high_E_model", data=np.array([event.mc.corsika_high_E_model]))
gr_mc_header.create_dataset("corsika_bunchsize", data=np.array([event.mc.corsika_bunchsize]))
gr_mc_header.create_dataset("corsika_wlen_min", data=np.array([event.mc.corsika_wlen_min]))
gr_mc_header.create_dataset("corsika_wlen_max", data=np.array([event.mc.corsika_wlen_max]))
gr_mc_header.create_dataset("corsika_low_E_detail", data=np.array([event.mc.corsika_low_E_detail]))
gr_mc_header.create_dataset("corsika_high_E_detail", data=np.array([event.mc.corsika_high_E_detail]))
def set_tel_info(event, right_tel, hdf5):
'''
dataset = hdf5.create_dataset('tel_info', (len(right_tel),),
dtype=[('subtype', 'i4'),
('type', 'i4'),
('mirror_type', 'i4'),
('geom', 'i4'),
('tel_id', 'i4')])
'''
Array = {"subtype": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "type": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "mirror_type": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "geom": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "tel_id": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "mirror_dish_area": np.zeros(len(right_tel), dtype=np.dtype('float64')), "num_pixels": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "num_channels": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "optical_foclen": np.zeros(len(right_tel), dtype=np.dtype('uint8')), "mirror_numtiles": np.zeros(len(right_tel), dtype=np.dtype('uint8'))}
Image = {"image1": np.ones((len(right_tel), 1855, 1855), dtype=bool), "image2": np.ones((len(right_tel), 1764, 1764), dtype=bool), "pixel_pos1": np.ones((len(right_tel), 2, 1855), dtype=np.dtype('float64')), "pixel_pos2": np.ones((len(right_tel), 2, 1764), dtype=np.dtype('float64')), "tel_pos": np.ones((len(right_tel), 3), dtype=np.dtype('float64'))}
#subarray
for i in range(len(right_tel)):
tel_id = right_tel[i]
Array["mirror_dish_area"][i] = event.inst.mirror_dish_area[tel_id].value
#Array["camera_rotation_angle"][i] = event.inst.camera_rotation_angle[tel_id]
Array["num_pixels"][i] = event.inst.num_pixels[tel_id]
Array["num_channels"][i] = event.inst.num_channels[tel_id]
Array["optical_foclen"][i] = event.inst.optical_foclen[tel_id].value
Array["mirror_numtiles"][i] = event.inst.mirror_numtiles[tel_id]
Image["tel_pos"][i] = event.inst.tel_pos[tel_id].value
if event.inst.subarray.tels[tel_id].optics.tel_subtype == '':
Array["subtype"][i] = 0
else:
Array["subtype"][i] = 1
if event.inst.subarray.tels[tel_id].optics.tel_type == 'MST':
Array["type"][i] = 0
elif event.inst.subarray.tels[tel_id].optics.tel_type == 'LST':
Array["type"][i] = 1
else:
Array["type"][i] = 2
if event.inst.subarray.tels[tel_id].optics.mirror_type == 'DC':
Array["mirror_type"][i] = 0
else:
Array["mirror_type"][i] = 1
if str(event.inst.subarray.tel[tel_id].camera) == 'NectarCam':
Array["geom"][i] = 0
Image["image1"][i] = event.inst.subarray.tel[tel_id].camera.neighbor_matrix
Image["pixel_pos1"][i] = event.inst.pixel_pos[tel_id].value
else:
Array["geom"][i] = 1
Image["image2"][i] = event.inst.subarray.tel[tel_id].camera.neighbor_matrix
Image["pixel_pos2"][i] = event.inst.pixel_pos[tel_id].value
Array["tel_id"][i] = tel_id
gr = hdf5.create_group("tel_info")
for key in Array.keys():
gr.create_dataset(key, data=Array[key])
for key in Image.keys():
gr.create_dataset(key, data=Image[key], compression="gzip", compression_opts=9)
def set_event_info(event, event_info):
event_info["mc_E"].append(event.mc.energy.value)
event_info["mc_altitude"].append(event.mc.alt.value)
event_info["mc_azimuth"].append(event.mc.az.value)
event_info["mc_core_x"].append(event.mc.core_x.value)
event_info["mc_core_y"].append(event.mc.core_y.value)
event_info["mc_h_first_int"].append(event.mc.h_first_int.value)
event_info["mc_gamma_proton"].append(event.mc.shower_primary_id)
event_info["trigger_gps_time"].append(event.trig.gps_time.value)
return event_info
def set_mc(event, tel_id, event_id, events_info):
# arten = ["mc_E", "mc_altitude", "mc_azimuth", "mc_core_x", "mc_core_y", "mc_h_first_int", "mc_azimuth_raw", "mc_altitude_raw", "mc_azimuth_cor", "mc_altitude_cor", "mc_time_slice", "mc_refstep", "tel_id", "mc_gamma_proton"]
# Tev, rad, rad, m, m, m, , , , , , , , ]
events_info["mc_azimuth_raw"].append(event.mc.tel[tel_id].azimuth_raw)
events_info["mc_altitude_raw"].append(event.mc.tel[tel_id].altitude_raw)
events_info["mc_azimuth_cor"].append(event.mc.tel[tel_id].azimuth_cor)
events_info["mc_altitude_cor"].append(event.mc.tel[tel_id].altitude_cor)
events_info["mc_time_slice"].append(event.mc.tel[tel_id].time_slice)
events_info["mc_refstep"].append(event.mc.tel[tel_id].meta['refstep'])
events_info["event_id"].append(event_id)
# events_info["camera_rotation_angle"].append(event.inst.camera_rotation_angle[tel_id])
events_info["tel_id"].append(tel_id)
return events_info
def transfer_Data_to_hdf5(Filename, right_tel, num_events, image1, image2, compression, compression_opts, new_data_name=None):
try:
source = hessio_event_source(Filename, allowed_tels=right_tel)
except:
os.exit(1)
if new_data_name == None:
new_data_name = Filename.replace(".simtel.gz", "_" + compression + "_" + str(compression_opts) + ".hdf5")
if_first = True
# np.concatenate np.vstack np.hstack np.append
image1_index = 0
image2_index = 0
chunk_size = 1000
image_infos = {"image1": np.zeros((image1, 1, 1764, 25), dtype=np.dtype("uint16")), "image2": np.zeros((image2, 2, 1855, 64), dtype=np.dtype("uint16")), "reference_pulse_shape1": np.zeros((image1, 1, 480), dtype=np.dtype("float64")), "reference_pulse_shape2": np.zeros((image2, 2, 250), dtype=np.dtype("float64")), "photo_electron_image1": np.zeros((image1,1764), dtype=np.dtype("uint16")), "photo_electron_image2": np.zeros((image2,1855), dtype=np.dtype("uint16"))}
events_info = {"mc_azimuth_raw": [], "mc_altitude_raw": [], "mc_azimuth_cor": [], "mc_altitude_cor": [], "mc_time_slice": [], "mc_refstep": [], "tel_id": [], "img_type": [], "img_index": [], "event_id": []}
event_info = {"mc_E": [], "mc_altitude": [], "mc_azimuth": [], "mc_core_x": [], "mc_core_y": [], "mc_h_first_int": [], "mc_gamma_proton": [], "trigger_gps_time":[]}
new_image = 0
hdf5 = h5py.File(new_data_name, 'w')
shape_array = []
anzahl = 0
start_time = time.time()
# for event in tqdm(source):
pbar = tqdm(total=num_events)
for event in source:
if if_first:
set_mc_header(event, hdf5)
set_tel_info(event, right_tel, hdf5)
if_first = False
event_info = set_event_info(event, event_info)
for tel_id in event.r0.tels_with_data:
events_info = set_mc(event, tel_id, len(event_info["mc_E"]) - 1, events_info)
new_image = [event.r0.tel[tel_id].adc_samples]
new_image = np.array(new_image, dtype=np.dtype("uint16"))
if new_image.shape[1] == 1:
events_info["img_type"].append(1)
events_info["img_index"].append(image1_index)
image_infos["image1"][image1_index] = new_image
image_infos["reference_pulse_shape1"][image1_index] = np.array([event.mc.tel[tel_id].reference_pulse_shape], dtype=np.dtype("float64"))
image_infos["photo_electron_image1"][image1_index] = np.array([event.mc.tel[tel_id].photo_electron_image], dtype=np.dtype("float64"))
image1_index += 1
'''
MST
DC
FlashCam
'''
else:
events_info["img_type"].append(2)
events_info["img_index"].append(image2_index)
image_infos["image2"][image2_index] = new_image
image_infos["reference_pulse_shape2"][image2_index] = np.array([event.mc.tel[tel_id].reference_pulse_shape], dtype=np.dtype("float64"))
image_infos["photo_electron_image2"][image2_index] = np.array([event.mc.tel[tel_id].photo_electron_image], dtype=np.dtype("float64"))
image2_index += 1
'''
MST
DC
NectarCam
'''
anzahl += 1
if anzahl % 25 == 0:
pbar.update(25)
pbar.update(anzahl % 25)
pbar.close()
gr = hdf5.create_group("events")
for key in events_info.keys():
if key == "tel_id" or key == "img_type" or key == "img_index" or key == "event_id":
gr.create_dataset(key, data=np.array(events_info[key], dtype=np.dtype('uint8')), compression="gzip", compression_opts=9)
else:
gr.create_dataset(key, data=np.array(events_info[key], dtype=np.dtype('float64')), compression="gzip", compression_opts=9)
gr_event = hdf5.create_group("event")
for key in event_info.keys():
if key == "mc_gamma_proton":
gr_event.create_dataset(key, data=np.array(event_info[key], dtype=np.dtype('uint8')), compression="gzip", compression_opts=9)
else:
gr_event.create_dataset(key, data=np.array(event_info[key], dtype=np.dtype('float64')), compression="gzip", compression_opts=9)
gr_image = hdf5.create_group("image")
actuelle_time = time.time()
if compression == "gzip":
gr_image.create_dataset('image1', data=image_infos["image1"], compression="gzip", compression_opts=compression_opts)
elif compression == "no":
gr_image.create_dataset('image1', data=image_infos["image1"])
else:
gr_image.create_dataset('image1', data=image_infos["image1"], compression=compression)
print("image1\t" + compression + "_" + str(compression_opts) + "\t" + str(time.time() - actuelle_time))
actuelle_time = time.time()
if compression == "gzip":
gr_image.create_dataset('image2', data=image_infos["image2"], compression="gzip", compression_opts=compression_opts)
elif compression == "no":
gr_image.create_dataset('image2', data=image_infos["image2"])
else:
gr_image.create_dataset('image2', data=image_infos["image2"], compression=compression)
print("image2\t" + compression + "_" + str(compression_opts) + "\t" + str(time.time() - actuelle_time))
actuelle_time = time.time()
if compression == "no":
gr_image.create_dataset('reference_pulse_shape1', data=image_infos["reference_pulse_shape1"])
gr_image.create_dataset('reference_pulse_shape2', data=image_infos["reference_pulse_shape2"])
gr_image.create_dataset('photo_electron_image1', data=image_infos["photo_electron_image1"])
gr_image.create_dataset('photo_electron_image2', data=image_infos["photo_electron_image2"])
else:
gr_image.create_dataset('reference_pulse_shape1', data=image_infos["reference_pulse_shape1"], compression=compression)
gr_image.create_dataset('reference_pulse_shape2', data=image_infos["reference_pulse_shape2"], compression=compression)
gr_image.create_dataset('photo_electron_image1', data=image_infos["photo_electron_image1"], compression=compression)
gr_image.create_dataset('photo_electron_image2', data=image_infos["photo_electron_image2"], compression=compression)
print("ref\t" + compression + "_" + str(compression_opts) + "\t" + str(time.time() - actuelle_time))
hdf5.close()
return new_data_name
def main(argv):
Nummer, Filename = get_num_filename(argv)
# Filename = "../Master_Daten/PROD3/LaPalma/gamma_20deg_0deg_run1___cta-prod3-lapalma3-2147m-LaPalma.simtel.gz"
right_tel = set_right_tel(Filename, Nummer + "_")
# num_events, image1, image2 = get_num_events(Filename, right_tel)
num_events = 2185
image1 = 12494
image2 = 13517
comp = {"szip": [0], "lzf": [0], "gzip": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], "no": [0]}
comp = {"gzip": [9], "no": [0]}
for compression in comp:
for compression_opts in comp[compression]:
print()
new_data_name = transfer_Data_to_hdf5(Filename, right_tel, num_events, image1, image2, compression, compression_opts)
actuelle_time = time.time()
with h5py.File(new_data_name, 'r+') as f:
group = f.get('image')
for i in group.keys():
info = group[i][20]
print("read\t" + compression + "_" + str(compression_opts) + "\t" + str(time.time() - actuelle_time))
if __name__ == "__main__":
main(sys.argv)