-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbanknote2.py
127 lines (115 loc) · 4.62 KB
/
banknote2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pickle
import numpy as np
import math
def grad(image):
gradient=np.ndarray((128,256),dtype=np.float32)
gmagnitude=np.ndarray((128,256),dtype=np.float32)
for i in range(1,129):
for j in range(1,257):
gx=image[i-1,j]-image[i+1,j]
gy=image[i,j-1]-image[i,j+1]
if(gx==0 and gy==0):
gmagnitude[i-1,j-1]=0
gradient[i-1,j-1]=0
elif(gx==0):
gmagnitude[i-1,j-1]=abs(gy)
gradient[i-1,j-1]=90
elif(gy==0):
gmagnitude[i-1,j-1]=abs(gx)
gradient[i-1,j-1]=0
else:
gmagnitude[i-1,j-1]=math.sqrt(gx*gx+gy*gy)
a=math.degrees(math.atan(gy/gx))
if(a>0):
gradient[i-1,j-1]=a
else:
gradient[i-1,j-1]=a+180
return gradient,gmagnitude
def histogram(gradient,gmagnitude,j1,j2,k1,k2):
hist= np.zeros((1,9),dtype=np.float32)
for i in range(j1,j2+1):
for j in range(k1,k2+1):
if(gradient[i,j]>=0 and gradient[i,j]<=20):
hist[0,0]+=gmagnitude[i,j]*(20-gradient[i,j])/20
hist[0,1]+=gmagnitude[i,j]*(gradient[i,j]-0)/20
elif(gradient[i,j]>20 and gradient[i,j]<=40):
hist[0,1]+=gmagnitude[i,j]*(40-gradient[i,j])/20
hist[0,2]+=gmagnitude[i,j]*(gradient[i,j]-20)/20
elif(gradient[i,j]>40 and gradient[i,j]<=60):
hist[0,2]+=gmagnitude[i,j]*(60-gradient[i,j])/20
hist[0,3]+=gmagnitude[i,j]*(gradient[i,j]-40)/20
elif(gradient[i,j]>60 and gradient[i,j]<=80):
hist[0,3]+=gmagnitude[i,j]*(80-gradient[i,j])/20
hist[0,4]+=gmagnitude[i,j]*(gradient[i,j]-60)/20
elif(gradient[i,j]>80 and gradient[i,j]<=100):
hist[0,4]+=gmagnitude[i,j]*(100-gradient[i,j])/20
hist[0,5]+=gmagnitude[i,j]*(gradient[i,j]-80)/20
elif(gradient[i,j]>100 and gradient[i,j]<=120):
hist[0,5]+=gmagnitude[i,j]*(120-gradient[i,j])/20
hist[0,6]+=gmagnitude[i,j]*(gradient[i,j]-100)/20
elif(gradient[i,j]>120 and gradient[i,j]<=140):
hist[0,6]+=gmagnitude[i,j]*(140-gradient[i,j])/20
hist[0,7]+=gmagnitude[i,j]*(gradient[i,j]-120)/20
elif(gradient[i,j]>140 and gradient[i,j]<=160):
hist[0,7]+=gmagnitude[i,j]*(160-gradient[i,j])/20
hist[0,8]+=gmagnitude[i,j]*(gradient[i,j]-140)/20
elif(gradient[i,j]>160 and gradient[i,j]<=180):
hist[0,8]+=gmagnitude[i,j]*(180-gradient[i,j])/20
hist[0,0]+=gmagnitude[i,j]*(gradient[i,j]-160)/20
return hist
def normalise(blockhist):
norm=0
for i in range(0,36):
norm+=(blockhist[0,i])*(blockhist[0,i])
norm=math.sqrt(norm)
for i in range(0,36):
blockhist[0,i]=(blockhist[0,i])/norm
return blockhist
'''
def sroot(im):
for i in range(0,258):
for j in range(0,130):
im[i,j]=math.sqrt(im[i,j])
return im
'''
with open('banknote1.pickle') as f:
dict=pickle.load(f)
train_dataset=dict['train_dataset']
train_labels=dict['train_labels']
hogfeatures=np.ndarray((540,3780),dtype=np.float32)
for i in range(0,540):
print i
gradient=np.ndarray((128,256),dtype=np.float32)
gmagnitude=np.ndarray((128,256),dtype=np.float32)
image=np.ndarray((130,258),dtype=np.float32)
image=train_dataset[i,:,:]
gradient,gmagnitude=grad(image)
j=0
k=0
count=0
while(j<=96):
k=0
while(k<=224):
histcell1=np.ndarray((1,9),dtype=np.float32)
histcell2=np.ndarray((1,9),dtype=np.float32)
histcell3=np.ndarray((1,9),dtype=np.float32)
histcell4=np.ndarray((1,9),dtype=np.float32)
blockhist=np.ndarray((1,36),dtype=np.float32)
histcell1=histogram(gradient,gmagnitude,j,j+15,k,k+15)
histcell2=histogram(gradient,gmagnitude,j,j+15,k+16,k+31)
histcell3=histogram(gradient,gmagnitude,j+16,j+31,k,k+15)
histcell4=histogram(gradient,gmagnitude,j+16,j+31,k+16,k+31)
blockhist[0,:9]=histcell1
blockhist[0,9:18]=histcell2
blockhist[0,18:27]=histcell3
blockhist[0,27:]=histcell4
blockhist=normalise(blockhist)
hogfeatures[i,count:count+36]=blockhist
count+=36
k+=16
j+=16
dict['svmhogfeatures']=hogfeatures
dict['train_labels']=train_labels
dict['train_dataset']=train_dataset
with open('svmhogfeatures.pickle','wb') as f:
pickle.dump(dict,f)