-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
202 lines (163 loc) · 7.37 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
class LinearLayer(nn.Module):
def __init__(self, input_dim, output_dim):
super(LinearLayer, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
scale = 1. * np.sqrt(6. / (input_dim + output_dim))
# approximated posterior
self.w = nn.Parameter(torch.Tensor(self.input_dim, self.output_dim).uniform_(-scale, scale))
self.bias = nn.Parameter(torch.Tensor(self.output_dim).uniform_(-scale, scale))
def forward(self, x):
output = torch.mm(x, self.w) + self.bias
return output
class SparseLinearLayer(nn.Module):
def __init__(self, gene_size, device):
super(SparseLinearLayer, self).__init__()
self.device = device
self.input_dim = sum(gene_size)
self.output_dim = len(gene_size)
self.mask = self._mask(gene_size).detach().to(self.device)
scale = 1. * np.sqrt(6. / (self.input_dim + self.output_dim))
# approximated posterior
self.w = nn.Parameter(torch.Tensor(self.input_dim, self.output_dim).uniform_(-scale, scale).to(self.device) * self.mask)
self.bias = nn.Parameter(torch.Tensor(self.output_dim).uniform_(-scale, scale).to(self.device))
def forward(self, x):
output = torch.mm(x, self.w * self.mask) + self.bias
return output
def _mask(self, gene_size):
index_gene = []
index_gene.append(0)
for i in range(len(gene_size)):
index_gene.append(gene_size[i] + index_gene[i])
sparse_mask = torch.zeros(sum(gene_size), len(gene_size))
for i in range(len(gene_size)):
sparse_mask[index_gene[i]:index_gene[i+1], i]=1
return sparse_mask
class Encoder(nn.Module):
def __init__(self, gene_size, device):
super(Encoder, self).__init__()
self.layer = SparseLinearLayer(gene_size, device)
def forward(self, x):
x = self.layer(x)
return x, self.reg_layers()
def reg_layers(self):
reg = torch.norm(self.layer.w, 1)
return reg
class Predictor(nn.Module):
def __init__(self, gene_size):
super(Predictor, self).__init__()
self.input_dim = len(gene_size)
self.Layer1 = LinearLayer(self.input_dim, 100)
self.Layer2 = LinearLayer(100, 1)
self.activation_fn = nn.Softplus(beta = 10)
def forward(self, x):
x1 = self.activation_fn(self.Layer1(x))
x2 = self.Layer2(x1)
return x2, self.reg_layers()
def reg_layers(self):
reg = torch.norm(self.Layer1.w, 1) + torch.norm(self.Layer2.w, 1)
return reg
class Main_effect(nn.Module):
def __init__(self, gene_size):
super(Main_effect, self).__init__()
self.input_dim = len(gene_size)
self.Layer1 = LinearLayer(self.input_dim, 1)
def forward(self, x):
x = self.Layer1(x)
return x, self.reg_layers()
def reg_layers(self):
reg = torch.norm(self.Layer1.w, 1)
return reg
class SparseNN(nn.Module):
def __init__(self, encoder, predictor):
super(SparseNN, self).__init__()
self.encoder = encoder
self.predictor = predictor
def forward(self, x):
x1, kl1 = self.encoder(x)
x2, kl2 = self.predictor(x1)
return x2, kl1, kl2
class NNtraining(object):
def __init__(self,
model,
learning_rate=0.001,
batch_size=10000,
num_epoch=200,
early_stop_patience = 20,
reg_weight_encoder = 0.0,
reg_weight_predictor = 0.0,
use_cuda=False,
use_early_stopping = False):
self.model = model
self.learning_rate = learning_rate
self.batch_size = batch_size
self.num_epoch = num_epoch
self.best_val = 1e5
self.early_stop_patience = early_stop_patience
self.epochs_since_update = 0 # used for early stopping
self.reg_weight_encoder = reg_weight_encoder
self.reg_weight_predictor = reg_weight_predictor
self.use_early_stopping = use_early_stopping
self.use_cuda = use_cuda
if use_cuda:
self.model.cuda()
def training(self, x, y, xval, yval):
parameters = set(self.model.parameters())
optimizer = optim.Adam(parameters, lr=self.learning_rate, eps=1e-3)
criterion = nn.MSELoss()
if self.use_cuda:
x = x.cuda()
y = y.cuda()
train_dl = DataLoader(TensorDataset(x, y), batch_size=self.batch_size, shuffle=True)
for epoch in range(self.num_epoch):
for x_batch, y_batch in train_dl:
optimizer.zero_grad()
self.model.train()
# calculate the training loss
output, reg_encoder, reg_predictor = self.model(x_batch)
loss = criterion(y_batch, output) + self.reg_weight_encoder * reg_encoder + self.reg_weight_predictor * reg_predictor
# backpropogate the gradient
loss.backward()
# optimize with SGD
optimizer.step()
train_mse, train_pve = self.build_evaluation(x, y)
val_mse, val_pve = self.build_evaluation(xval, yval)
print('>>> Epoch {:5d}/{:5d} | train_mse={:.5f} | val_mse={:.5f} | train_pve={:.5f} | val_pve={:.5f}'.format(epoch,
self.num_epoch,
train_mse,
val_mse,
train_pve,
val_pve))
if self.use_early_stopping:
early_stop = self._early_stop(val_mse)
if early_stop:
break
def build_evaluation(self, x_test, y_test):
criterion = nn.MSELoss()
if self.use_cuda:
x_test = x_test.cuda()
y_test = y_test.cuda()
self.model.eval()
y_pred, _, _ = self.model(x_test)
mse_eval = criterion(y_test, y_pred).detach()
pve = (1. - torch.var(y_pred.view(-1) - y_test.view(-1)) / torch.var(y_test.view(-1))).detach()
return mse_eval, pve
def _early_stop(self, val_loss):
updated = False # flag
current = val_loss
best = self.best_val
improvement = (best - current) / best
# improvement = best - current
if improvement > 0.00:
self.best_val = current
updated = True
if updated:
self.epochs_since_update = 0
else:
self.epochs_since_update += 1
return self.epochs_since_update > self.early_stop_patience