-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_mst.py
168 lines (124 loc) · 5.09 KB
/
eval_mst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import json
from datasets import load_dataset, Dataset, DatasetDict
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer, default_data_collator
from transformers.utils import logging
from languagemodels.argparser_factory import ArgumentParserFactory
from languagemodels.lm_factory import LMFactory
from languagemodels.scripting_utils import (
tokenize_function,
compute_cloze_surprisal,
preprocess_function_sliding,
repackage_hidden
)
def main():
parser = ArgumentParserFactory.get_argparser("eval")
base_args, eval_args, = parser.parse_args_into_dataclasses()
# initialize logger
verbosity = logging.log_levels[eval_args.log_level]
logging.set_verbosity(verbosity)
logger = logging.get_logger("transformers")
tokenizer = AutoTokenizer.from_pretrained(eval_args.tokenizer_name_or_path)
# If the tokenizer doesn't provide a pad token, set it to be the eos token
if tokenizer.pad_token_id == None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model, config = LMFactory.from_pretrained(base_args.auto_model_class, eval_args.model_name_or_path)
model.eval()
T_max = model.max_length
# print('MODEL PARAMETERS', model.num_parameters(exclude_embeddings=True))
# file
if eval_args.eval_file_name:
dataset_files = {
"test": eval_args.eval_file_name
}
raw_dataset = load_dataset(
path=eval_args.input_files_path,
data_files=dataset_files
)
# json string from web interface
elif eval_args.eval_string:
data_dict = json.loads(eval_args.eval_string)
dataset_dict = {"test": Dataset.from_dict(data_dict)}
raw_dataset = DatasetDict(dataset_dict)
if not os.path.exists(eval_args.output_dir):
os.makedirs(eval_args.output_dir)
output_file_path = os.path.join(eval_args.output_dir, eval_args.output_file_name)
# determine length of input sequences:
if base_args.block_size is not None:
block_size = base_args.block_size
elif hasattr(config, "block_size"):
block_size = config.block_size
elif hasattr(config, "max_length"):
block_size = config.max_length
else:
raise ValueError(
"If config doesn't have a 'max_length' or 'block_size' attribute,"
"this has to be provided via the '--block_size' CL argument"
)
tokenized_datasets = raw_dataset.map(
tokenize_function,
batched=True,
batch_size=eval_args.batch_size,
num_proc=1, # no parallel processing for now
fn_kwargs={"tokenizer": tokenizer, "model_name_or_path": eval_args.model_name_or_path},
desc="Running tokenizer on datasets"
)
actual_sequences_size = len(tokenized_datasets["test"]["input_ids"])
mst = {}
S_T_min = np.inf
for T in range(2,T_max+1):
print("*************************")
print("T:", T)
lm_datasets = tokenized_datasets.map(
preprocess_function_sliding,
batched=True,
batch_size=actual_sequences_size, # process the whole test set at once to retain sequence ids
fn_kwargs={"T": T, "tokenizer": tokenizer},
desc=f"Grouping datasets into chunks of size {block_size}"
)
test_dataset = lm_datasets["test"].with_format(
type="torch", columns=["input_ids", "labels", "attention_mask", ])
# preview data
# n = np.min((len(test_dataset), 10))
# if n > 1:
# for i in range(n):
# logger.info(test_dataset[i])
test_dataloader = DataLoader(test_dataset, shuffle=False, collate_fn=default_data_collator, batch_size=eval_args.batch_size, drop_last=False)
denom = len(test_dataloader) # |HeldOut| - T
S_T = 0
for batch in tqdm(test_dataloader, desc=f"T={T}"):
with torch.no_grad():
outputs = model(
input_ids=batch["input_ids"],
labels=batch["labels"],
pad_id=tokenizer.pad_token_id,
return_dict=True
)
if config.model_type == "rnn-lm":
repackage_hidden(outputs["final_hidden_state"])
logits = outputs["logits"]
cloze_logits = logits[:, -2]
cloze_batch = {k: v[:, -1] for k, v in batch.items()}
cloze_surprisal = compute_cloze_surprisal(
cloze_batch["input_ids"],
cloze_logits,
)
S_T += cloze_surprisal.sum().item()
# divide summed surprisals at T by observed number of positions
S_T = np.round(S_T/denom, 4)
# continue only if average surprisal keeps decreasing
if S_T > S_T_min:
break
else:
S_T_min = S_T
mst[T] = S_T
print(T, S_T)
with open(output_file_path, "w") as f:
json.dump(mst, f)
if __name__ == "__main__":
main()