-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_graph_improv.py
95 lines (85 loc) · 3.41 KB
/
plot_graph_improv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import json
import matplotlib.pyplot as plt
import pandas as pd
from Helper import calculate_entropy
import seaborn as sns
sns.set_theme()
def create_graphs(json_filename, inital_title=""):
data = None
with open(json_filename) as f:
data = json.load(f)
# create a dataframe from the json data:
df = pd.DataFrame(data["pop"])
df = df.drop(columns=["dist_lst", "degree_errs"])
# remove all columns ending in "_fac":
df = df.loc[:, ~df.columns.str.endswith("_fac")]
for x in df.columns:
try:
df[x].plot.line()
plt.title(inital_title + " - " + x)
plt.show(block=False)
plt.clf()
except TypeError:
pass
df.plot.line()
plt.title(inital_title)
plt.show(block=False)
# remove column "clean_deg_len":
df = df.drop(columns=["clean_deg_len", "non_unique_packets"])
# plot all columns as a line in a line-plot:
df.plot.line()
plt.title(inital_title + " - clean_deg_len and non_unique_packets")
plt.show(block=False)
try:
df = df.drop(columns=["avg_unrecovered"])
except KeyError:
pass
df.plot.line()
plt.title(inital_title + " - clean_deg_len and non_unique_packets and avg_unrecovered")
plt.show(block=False)
if __name__ == "__main__":
bmp_low_entropy = ["logo_mosla_bw.bmp"]
image_high_entropy = ["logo.jpg", "logo_mosla_rgb.png", "Marburg_Wall_CC0.png"]
compress_encrypt_high_entropy = ["Dorn.zip", "aes_Dorn", "aes_ecb_Dorn"]
text_medium_entropy = ['Dorn', 'LICENSE', 'Rapunzel', 'Rothkäppchen', 'Sneewittchen']
text_medium_high_entropy = ["Dorn.pdf", "lorem_ipsum100k.doc"]
input_files = bmp_low_entropy + image_high_entropy + compress_encrypt_high_entropy + text_medium_entropy + \
text_medium_high_entropy
res = []
for input_file in input_files:
tmp = calculate_entropy(input_file, convert_to_dna=False)
val, tmpp = tmp
print(f"{input_file} : {tmp}")
tmp2 = calculate_entropy(input_file, convert_to_dna=True)
val2, tmpp2 = tmp2
print(f"DNA: {input_file} : {tmp2}")
tmpp["File"] = input_file
tmpp["Entropy"] = val
res.append(tmpp)
tmpp2["File"] = f"{input_file}_DNA"
tmpp2["Entropy"] = val2
res.append(tmpp2)
df = pd.DataFrame.from_records(res)
filtered_df = df[df["File"].str.contains("DNA")]
filtered_df = filtered_df.copy()
filtered_df["File"] = filtered_df["File"].str.replace("_DNA", "")
filtered_df.plot.bar(x="File", y="Entropy")
plt.xticks(rotation=85)
plt.subplots_adjust(bottom=0.42)
plt.legend([])
plt.ylabel("Entropy")
plt.title("Entropy of DNA-sequences")
plt.savefig("file_entropy_DNA.svg", format="svg", dpi=1200)
plt.savefig("file_entropy_DNA.pdf", bbox_inches="tight")
plt.show()
print(df)
"""
# get list of all subfolders in "final_results":
subfolders = [f.path for f in os.scandir("final_results") if f.is_dir()]
for subfolder in subfolders:
for sub_subfolder in [f.path for f in os.scandir(subfolder) if f.is_dir()]:
if "diff_opt_state.json" in os.listdir(sub_subfolder):
create_graphs(f"{sub_subfolder}/diff_opt_state.json", inital_title=subfolder)
elif "evo_opt_state.json" in os.listdir(sub_subfolder):
create_graphs(f"{sub_subfolder}/evo_opt_state.json", inital_title=subfolder)
"""