-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
432 lines (366 loc) · 17 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from typing import Tuple
import numpy as np
from PIL import Image
import torch
import torchvision.transforms.functional as F
import cv2
from open_clip import image_transform
from ultralytics.data.augment import LetterBox
from ultralytics.data.loaders import LoadPilAndNumpy
from ultralytics.engine.results import Results
# from ultralytics.models.fastsam import FastSAMPrompt
from ultralytics.utils import ops
from configs.config import HashingConfig
config = HashingConfig(yaml_path="configs/256bit.yaml")
def default_image_loader(path):
img = Image.open(path).convert('RGB') # RGB, BCHW # torchvision.datapoints.
return img
def postprocess_segmentation(preds, img, orig_imgs, retina_masks, conf, iou, agnostic_nms=False):
"""
Copied from FastSAM code:
https://github.com/CASIA-IVA-Lab/FastSAM/blob/4d153e909f0ad9c8ecd7632566e5a24e21cf0071/fastsam/predict.py#L14
"""
p = ops.non_max_suppression(preds[0],
conf,
iou,
agnostic_nms,
max_det=100,
nc=1)
results = []
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
img_path = "ok"
if not len(pred): # save empty boxes
results.append(Results(orig_img=orig_img, path=img_path, names="segment", boxes=pred[:, :6]))
continue
if retina_masks:
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(
Results(orig_img=orig_img, path=img_path, names={}, boxes=pred[:, :6], masks=masks))
return results
def preprocess_segmentation(img_origin, imgsz=1024):
"""
FastSAM preprocessing
"""
h, w = img_origin.shape[:2]
if h > w:
scale = min(imgsz / h, imgsz / w)
inp = np.zeros((imgsz, imgsz, 3), dtype=np.uint8)
nw = int(w * scale)
nh = int(h * scale)
a = int((nh - nw) / 2)
inp[: nh, a:a + nw, :] = cv2.resize(cv2.cvtColor(img_origin, cv2.COLOR_BGR2RGB), (nw, nh))
else:
scale = min(imgsz / h, imgsz / w)
inp = np.zeros((imgsz, imgsz, 3), dtype=np.uint8)
nw = int(w * scale)
nh = int(h * scale)
a = int((nw - nh) / 2)
inp[a: a + nh, :nw, :] = cv2.resize(cv2.cvtColor(img_origin, cv2.COLOR_BGR2RGB), (nw, nh))
rgb = np.array([inp], dtype=np.float32) / 255.0
return np.transpose(rgb, (0, 3, 1, 2))
def yolo_transform(im, input_size, is_mask=False):
"""
Preprocess images or mask for FastSAM (YOLO)
"""
def pre_transform(im):
same_shapes = all(x.shape == im[0].shape for x in im)
auto = same_shapes
# stride: model.predictor.model.stride
if is_mask:
im = [x * 255 for x in im]
return [LetterBox(input_size, auto=auto, stride=32)(image=x) for x in im]
im = LoadPilAndNumpy(im).im0 # , imgsz=input_size
im = pre_transform(im)
im = np.stack(im)
if not is_mask:
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
im = np.ascontiguousarray(im) # contiguous
if is_mask:
img = np.ones_like(im, dtype=np.uint8) # torch.ones_like(im, dtype=torch.uint8)
img[im < 115] = 0
else:
img = im.astype(np.float32) # im.float()
img /= 255 # 0 - 255 to 0.0 - 1.0
return img.squeeze(0)
def box2mask(image, box):
w, h = image.size
bbox_mask = np.zeros((h, w))
x1, y1, x2, y2 = map(round, box)
bbox_mask[y1:y2, x1:x2] = 1
return bbox_mask
def image_to_np_ndarray(image):
# From: https://github.com/CASIA-IVA-Lab/FastSAM/blob/main/fastsam/prompt.py
if type(image) is str:
return np.array(Image.open(image))
elif issubclass(type(image), Image.Image):
return np.array(image)
elif type(image) is np.ndarray:
return image
return None
class FastSAMPrompt:
# For Box and Point Prompt
# From: https://github.com/CASIA-IVA-Lab/FastSAM/blob/main/fastsam/prompt.py
def __init__(self, image, results, device='cuda'):
if isinstance(image, str) or isinstance(image, Image.Image):
image = image_to_np_ndarray(image)
self.device = device
self.results = results
self.img = image
def _segment_image(self, image, bbox):
if isinstance(image, Image.Image):
image_array = np.array(image)
else:
image_array = image
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
segmented_image = Image.fromarray(segmented_image_array)
black_image = Image.new('RGB', image.size, (255, 255, 255))
# transparency_mask = np.zeros_like((), dtype=np.uint8)
transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8)
transparency_mask[y1:y2, x1:x2] = 255
transparency_mask_image = Image.fromarray(transparency_mask, mode='L')
black_image.paste(segmented_image, mask=transparency_mask_image)
return black_image
def _format_results(self, result, filter=0):
annotations = []
n = len(result.masks.data)
for i in range(n):
annotation = {}
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation['id'] = i
annotation['segmentation'] = mask.cpu().numpy()
annotation['bbox'] = result.boxes.data[i]
annotation['score'] = result.boxes.conf[i]
annotation['area'] = annotation['segmentation'].sum()
annotations.append(annotation)
return annotations
def filter_masks(annotations): # filte the overlap mask
annotations.sort(key=lambda x: x['area'], reverse=True)
to_remove = set()
for i in range(0, len(annotations)):
a = annotations[i]
for j in range(i + 1, len(annotations)):
b = annotations[j]
if i != j and j not in to_remove:
# check if
if b['area'] < a['area']:
if (a['segmentation'] & b['segmentation']).sum() / b['segmentation'].sum() > 0.8:
to_remove.add(j)
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
def _get_bbox_from_mask(self, mask):
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x1, y1, w, h = cv2.boundingRect(contours[0])
x2, y2 = x1 + w, y1 + h
if len(contours) > 1:
for b in contours:
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
# Merge multiple bounding boxes into one.
x1 = min(x1, x_t)
y1 = min(y1, y_t)
x2 = max(x2, x_t + w_t)
y2 = max(y2, y_t + h_t)
h = y2 - y1
w = x2 - x1
return [x1, y1, x2, y2]
def _crop_image(self, format_results):
image = Image.fromarray(cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB))
ori_w, ori_h = image.size
annotations = format_results
mask_h, mask_w = annotations[0]['segmentation'].shape
if ori_w != mask_w or ori_h != mask_h:
image = image.resize((mask_w, mask_h))
cropped_boxes = []
cropped_images = []
not_crop = []
filter_id = []
# annotations, _ = filter_masks(annotations)
# filter_id = list(_)
for _, mask in enumerate(annotations):
if np.sum(mask['segmentation']) <= 100:
filter_id.append(_)
continue
bbox = self._get_bbox_from_mask(mask['segmentation']) # mask 的 bbox
cropped_boxes.append(self._segment_image(image, bbox))
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
cropped_images.append(bbox) # Save the bounding box of the cropped image.
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
def box_prompt(self, bbox=None, bboxes=None):
if self.results == None:
return []
assert bbox or bboxes
if bboxes is None:
bboxes = [bbox]
max_iou_index = []
for bbox in bboxes:
assert (bbox[2] != 0 and bbox[3] != 0)
masks = self.results[0].masks.data
target_height = self.img.shape[0]
target_width = self.img.shape[1]
h = masks.shape[1]
w = masks.shape[2]
if h != target_height or w != target_width:
bbox = [
int(bbox[0] * w / target_width),
int(bbox[1] * h / target_height),
int(bbox[2] * w / target_width),
int(bbox[3] * h / target_height), ]
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2))
orig_masks_area = torch.sum(masks, dim=(1, 2))
union = bbox_area + orig_masks_area - masks_area
IoUs = masks_area / union
max_iou_index.append(int(torch.argmax(IoUs)))
max_iou_index = list(set(max_iou_index))
return np.array(masks[max_iou_index].cpu().numpy())
def point_prompt(self, points, pointlabel): # numpy
if self.results == None:
return []
masks = self._format_results(self.results[0], 0)
target_height = self.img.shape[0]
target_width = self.img.shape[1]
h = masks[0]['segmentation'].shape[0]
w = masks[0]['segmentation'].shape[1]
if h != target_height or w != target_width:
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
onemask = np.zeros((h, w))
masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for i, annotation in enumerate(masks):
if type(annotation) == dict:
mask = annotation['segmentation']
else:
mask = annotation
for i, point in enumerate(points):
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
onemask[mask] = 1
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
onemask[mask] = 0
onemask = onemask >= 1
return np.array([onemask])
def everything_prompt(self):
if self.results == None:
return []
return self.results[0].masks.data
def get_context_box(image, box, small_box_area, medium_box_area, context_crop_factor_small,
context_crop_factor_medium) -> Tuple:
x1, y1, x2, y2 = box
box_w = x2 - x1
box_h = y2 - y1
image_w, image_h = image.size
# Resize crop box
box_x_center = x1 + (x2 - x1) / 2
box_y_center = y1 + (y2 - y1) / 2
if box_w * box_h <= small_box_area:
scale_factor = context_crop_factor_small
elif box_w * box_h <= medium_box_area:
scale_factor = context_crop_factor_medium
x1_new = max(0, box_x_center - 0.5 * box_w * scale_factor)
x2_new = min(image_w, box_x_center + 0.5 * box_w * scale_factor)
y1_new = max(0, box_y_center - 0.5 * box_h * scale_factor)
y2_new = min(image_h, box_y_center + 0.5 * box_h * scale_factor)
box = x1_new, y1_new, x2_new, y2_new
return box
def resize2context(original_image, boxes, context, small_box_area, medium_box_area, context_crop_factor_small,
context_crop_factor_medium):
context_boxes = []
for box in boxes:
image = original_image.copy()
x1, y1, x2, y2 = box
box_w = x2 - x1
box_h = y2 - y1
if (context == "small" and box_w * box_h <= small_box_area) or (
context == "medium" and box_w * box_h <= medium_box_area):
context_box = get_context_box(image, box, small_box_area, medium_box_area, context_crop_factor_small,
context_crop_factor_medium)
else:
context_box = box
context_boxes.append(context_box)
return context_boxes
def preprocess_hash(segmentation_results, image_path: str, box, device):
image = default_image_loader(image_path)
fastsam_input_image = image.copy()
prompt_process = FastSAMPrompt(fastsam_input_image, segmentation_results, device=device)
image_w, image_h = image.size
pred_mask = prompt_process.box_prompt(bbox=box)
# Ultralytics format differs from FastSAM implementation version
# pred_mask = prompt_process.box_prompt(bbox=box)[0].masks.data
# model_params_type = pred_mask #.dtype
# pred_mask = pred_mask.cpu().numpy() # ['masks']
if len(pred_mask) < 1:
print("No objects found, using box as mask")
pred_mask = box2mask(image, box)
else:
try:
pred_mask = np.squeeze(pred_mask).astype(np.uint8)
pred_mask = cv2.resize(pred_mask, dsize=(image_w, image_h), interpolation=cv2.INTER_NEAREST)
except:
print("Image Box (%d,%d)(%d,%d) too small, using box as mask" % (*box,))
pred_mask = box2mask(image, box)
mask = pred_mask
# Use context if object is too small
if config.features.context_clip != 'none':
clip_box = resize2context(image, [box], config.features.context_clip, config.features.small_box_area,
config.features.medium_box_area,
config.features.context_crop_factor_small, config.features.context_crop_factor_medium
)[0]
else:
clip_box = box
# clip_crops = []
# fastsam_crops = []
# mask_crops = []
cropped_image = image.crop(box)
x1, y1, x2, y2 = map(round, box)
cropped_mask = mask.copy()
cropped_mask = cropped_mask[y1:y2, x1:x2]
fastsam_crop = yolo_transform([cropped_image], config.model.fastsam_input_size)
mask_crop = yolo_transform([np.expand_dims(cropped_mask, 2)], config.model.fastsam_input_size,
is_mask=True) # .unsqueeze(0)
#
#
# x1, y1, x2, y2 = map(round, box) # int
# mask_crops = yolo_transform([mask[y1:y2, x1:x2]], fastsam_input_size,
# is_mask=True) # .unsqueeze(0) #.type_as(model_params_type).to(device)
# fastsam_crops = yolo_transform([cropped_image], fastsam_input_size) # .type_as(model_params_type).to(device)
#
#
# clip_crops = open_clip_image_transform(cropped_image, is_train=False, resize_longest_max=True, image_size=clip_input_size) # .type_as(model_params_type).to(device)
# Masking
x1, y1, x2, y2 = map(round, clip_box) # TODO
box_w = x2 - x1
box_h = y2 - y1
if box_w * box_h > config.features.medium_box_area:
# x1, y1, x2, y2 = map(round, box)
cropped_mask = mask[y1:y2, x1:x2]
cropped_image = Image.fromarray(cropped_image * cropped_mask[..., np.newaxis].astype(np.uint8))
clip_crop = open_clip_image_transform(cropped_image, is_train=False, resize_longest_max=True,
image_size=config.model.clip_input_size) #.squeeze(0)
return mask_crop[np.newaxis, np.newaxis, ...].astype(np.float32), fastsam_crop[np.newaxis, ...], clip_crop[
np.newaxis, ...]
def open_clip_image_transform(image, image_size, is_train=False, resize_longest_max=True, fill_color=0):
img = image_transform(is_train=is_train, resize_mode="longest", # resize_longest_max=resize_longest_max,
image_size=image_size)(image) # .squeeze(0)
# Workaround for padding error in open_clip, see https://github.com/mlfoundations/open_clip/issues/629
_, height, width = img.shape
scale = image_size / float(max(height, width))
if width != height:
new_size = tuple(round(dim * scale) for dim in (height, width))
pad_h = image_size - new_size[0]
pad_w = image_size - new_size[1]
img = F.pad(img, padding=[pad_w // 2, pad_h // 2, pad_w - pad_w // 2, pad_h - pad_h // 2], fill=fill_color)
return img.numpy()