forked from tree-sitter/tree-sitter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery.c
3071 lines (2805 loc) · 101 KB
/
query.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "tree_sitter/api.h"
#include "./alloc.h"
#include "./array.h"
#include "./bits.h"
#include "./language.h"
#include "./point.h"
#include "./tree_cursor.h"
#include "./unicode.h"
#include <wctype.h>
// #define DEBUG_ANALYZE_QUERY
// #define LOG(...) fprintf(stderr, __VA_ARGS__)
#define LOG(...)
#define MAX_CAPTURE_LIST_COUNT 32
#define MAX_STEP_CAPTURE_COUNT 3
#define MAX_STATE_PREDECESSOR_COUNT 100
#define MAX_ANALYSIS_STATE_DEPTH 12
/*
* Stream - A sequence of unicode characters derived from a UTF8 string.
* This struct is used in parsing queries from S-expressions.
*/
typedef struct {
const char *input;
const char *start;
const char *end;
int32_t next;
uint8_t next_size;
} Stream;
/*
* QueryStep - A step in the process of matching a query. Each node within
* a query S-expression maps to one of these steps. An entire pattern is
* represented as a sequence of these steps. Fields:
*
* - `symbol` - The grammar symbol to match. A zero value represents the
* wildcard symbol, '_'.
* - `field` - The field name to match. A zero value means that a field name
* was not specified.
* - `capture_ids` - An array of integers representing the names of captures
* associated with this node in the pattern, terminated by a `NONE` value.
* - `depth` - The depth where this node occurs in the pattern. The root node
* of the pattern has depth zero.
* - `alternative_index` - The index of a different query step that serves as
* an alternative to this step.
*/
typedef struct {
TSSymbol symbol;
TSSymbol supertype_symbol;
TSFieldId field;
uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT];
uint16_t alternative_index;
uint16_t depth;
bool contains_captures: 1;
bool is_immediate: 1;
bool is_last_child: 1;
bool is_pass_through: 1;
bool is_dead_end: 1;
bool alternative_is_immediate: 1;
bool is_definite: 1;
} QueryStep;
/*
* Slice - A slice of an external array. Within a query, capture names,
* literal string values, and predicate step informations are stored in three
* contiguous arrays. Individual captures, string values, and predicates are
* represented as slices of these three arrays.
*/
typedef struct {
uint32_t offset;
uint32_t length;
} Slice;
/*
* SymbolTable - a two-way mapping of strings to ids.
*/
typedef struct {
Array(char) characters;
Array(Slice) slices;
} SymbolTable;
/*
* PatternEntry - Information about the starting point for matching a
* particular pattern, consisting of the index of the pattern within the query,
* and the index of the patter's first step in the shared `steps` array. These
* entries are stored in a 'pattern map' - a sorted array that makes it
* possible to efficiently lookup patterns based on the symbol for their first
* step.
*/
typedef struct {
uint16_t step_index;
uint16_t pattern_index;
} PatternEntry;
typedef struct {
Slice steps;
Slice predicate_steps;
uint32_t start_byte;
} QueryPattern;
typedef struct {
uint32_t byte_offset;
uint16_t step_index;
} StepOffset;
/*
* QueryState - The state of an in-progress match of a particular pattern
* in a query. While executing, a `TSQueryCursor` must keep track of a number
* of possible in-progress matches. Each of those possible matches is
* represented as one of these states. Fields:
* - `id` - A numeric id that is exposed to the public API. This allows the
* caller to remove a given match, preventing any more of its captures
* from being returned.
* - `start_depth` - The depth in the tree where the first step of the state's
* pattern was matched.
* - `pattern_index` - The pattern that the state is matching.
* - `consumed_capture_count` - The number of captures from this match that
* have already been returned.
* - `capture_list_id` - A numeric id that can be used to retrieve the state's
* list of captures from the `CaptureListPool`.
* - `seeking_immediate_match` - A flag that indicates that the state's next
* step must be matched by the very next sibling. This is used when
* processing repetitions.
* - `has_in_progress_alternatives` - A flag that indicates that there is are
* other states that have the same captures as this state, but are at
* different steps in their pattern. This means that in order to obey the
* 'longest-match' rule, this state should not be returned as a match until
* it is clear that there can be no longer match.
*/
typedef struct {
uint32_t id;
uint16_t start_depth;
uint16_t step_index;
uint16_t pattern_index;
uint16_t capture_list_id;
uint16_t consumed_capture_count: 12;
bool seeking_immediate_match: 1;
bool has_in_progress_alternatives: 1;
bool dead: 1;
bool needs_parent: 1;
} QueryState;
typedef Array(TSQueryCapture) CaptureList;
/*
* CaptureListPool - A collection of *lists* of captures. Each QueryState
* needs to maintain its own list of captures. To avoid repeated allocations,
* the reuses a fixed set of capture lists, and keeps track of which ones
* are currently in use.
*/
typedef struct {
CaptureList list[MAX_CAPTURE_LIST_COUNT];
CaptureList empty_list;
uint32_t usage_map;
} CaptureListPool;
/*
* AnalysisState - The state needed for walking the parse table when analyzing
* a query pattern, to determine at which steps the pattern might fail to match.
*/
typedef struct {
TSStateId parse_state;
TSSymbol parent_symbol;
uint16_t child_index;
TSFieldId field_id: 15;
bool done: 1;
} AnalysisStateEntry;
typedef struct {
AnalysisStateEntry stack[MAX_ANALYSIS_STATE_DEPTH];
uint16_t depth;
uint16_t step_index;
} AnalysisState;
typedef Array(AnalysisState) AnalysisStateSet;
/*
* AnalysisSubgraph - A subset of the states in the parse table that are used
* in constructing nodes with a certain symbol. Each state is accompanied by
* some information about the possible node that could be produced in
* downstream states.
*/
typedef struct {
TSStateId state;
uint8_t production_id;
uint8_t child_index: 7;
bool done: 1;
} AnalysisSubgraphNode;
typedef struct {
TSSymbol symbol;
Array(TSStateId) start_states;
Array(AnalysisSubgraphNode) nodes;
} AnalysisSubgraph;
/*
* StatePredecessorMap - A map that stores the predecessors of each parse state.
*/
typedef struct {
TSStateId *contents;
} StatePredecessorMap;
/*
* TSQuery - A tree query, compiled from a string of S-expressions. The query
* itself is immutable. The mutable state used in the process of executing the
* query is stored in a `TSQueryCursor`.
*/
struct TSQuery {
SymbolTable captures;
SymbolTable predicate_values;
Array(QueryStep) steps;
Array(PatternEntry) pattern_map;
Array(TSQueryPredicateStep) predicate_steps;
Array(QueryPattern) patterns;
Array(StepOffset) step_offsets;
Array(char) string_buffer;
const TSLanguage *language;
uint16_t wildcard_root_pattern_count;
TSSymbol *symbol_map;
};
/*
* TSQueryCursor - A stateful struct used to execute a query on a tree.
*/
struct TSQueryCursor {
const TSQuery *query;
TSTreeCursor cursor;
Array(QueryState) states;
Array(QueryState) finished_states;
CaptureListPool capture_list_pool;
uint32_t depth;
uint32_t start_byte;
uint32_t end_byte;
uint32_t next_state_id;
TSPoint start_point;
TSPoint end_point;
bool ascending;
bool halted;
};
static const TSQueryError PARENT_DONE = -1;
static const uint16_t PATTERN_DONE_MARKER = UINT16_MAX;
static const uint16_t NONE = UINT16_MAX;
static const TSSymbol WILDCARD_SYMBOL = 0;
static const TSSymbol NAMED_WILDCARD_SYMBOL = UINT16_MAX - 1;
/**********
* Stream
**********/
// Advance to the next unicode code point in the stream.
static bool stream_advance(Stream *self) {
self->input += self->next_size;
if (self->input < self->end) {
uint32_t size = ts_decode_utf8(
(const uint8_t *)self->input,
self->end - self->input,
&self->next
);
if (size > 0) {
self->next_size = size;
return true;
}
} else {
self->next_size = 0;
self->next = '\0';
}
return false;
}
// Reset the stream to the given input position, represented as a pointer
// into the input string.
static void stream_reset(Stream *self, const char *input) {
self->input = input;
self->next_size = 0;
stream_advance(self);
}
static Stream stream_new(const char *string, uint32_t length) {
Stream self = {
.next = 0,
.input = string,
.start = string,
.end = string + length,
};
stream_advance(&self);
return self;
}
static void stream_skip_whitespace(Stream *self) {
for (;;) {
if (iswspace(self->next)) {
stream_advance(self);
} else if (self->next == ';') {
// skip over comments
stream_advance(self);
while (self->next && self->next != '\n') {
if (!stream_advance(self)) break;
}
} else {
break;
}
}
}
static bool stream_is_ident_start(Stream *self) {
return iswalnum(self->next) || self->next == '_' || self->next == '-';
}
static void stream_scan_identifier(Stream *stream) {
do {
stream_advance(stream);
} while (
iswalnum(stream->next) ||
stream->next == '_' ||
stream->next == '-' ||
stream->next == '.' ||
stream->next == '?' ||
stream->next == '!'
);
}
static uint32_t stream_offset(Stream *self) {
return self->input - self->start;
}
/******************
* CaptureListPool
******************/
static CaptureListPool capture_list_pool_new(void) {
return (CaptureListPool) {
.empty_list = array_new(),
.usage_map = UINT32_MAX,
};
}
static void capture_list_pool_reset(CaptureListPool *self) {
self->usage_map = UINT32_MAX;
for (unsigned i = 0; i < MAX_CAPTURE_LIST_COUNT; i++) {
array_clear(&self->list[i]);
}
}
static void capture_list_pool_delete(CaptureListPool *self) {
for (unsigned i = 0; i < MAX_CAPTURE_LIST_COUNT; i++) {
array_delete(&self->list[i]);
}
}
static const CaptureList *capture_list_pool_get(const CaptureListPool *self, uint16_t id) {
if (id >= MAX_CAPTURE_LIST_COUNT) return &self->empty_list;
return &self->list[id];
}
static CaptureList *capture_list_pool_get_mut(CaptureListPool *self, uint16_t id) {
assert(id < MAX_CAPTURE_LIST_COUNT);
return &self->list[id];
}
static bool capture_list_pool_is_empty(const CaptureListPool *self) {
return self->usage_map == 0;
}
static uint16_t capture_list_pool_acquire(CaptureListPool *self) {
// In the usage_map bitmask, ones represent free lists, and zeros represent
// lists that are in use. A free list id can quickly be found by counting
// the leading zeros in the usage map. An id of zero corresponds to the
// highest-order bit in the bitmask.
uint16_t id = count_leading_zeros(self->usage_map);
if (id >= MAX_CAPTURE_LIST_COUNT) return NONE;
self->usage_map &= ~bitmask_for_index(id);
array_clear(&self->list[id]);
return id;
}
static void capture_list_pool_release(CaptureListPool *self, uint16_t id) {
if (id >= MAX_CAPTURE_LIST_COUNT) return;
array_clear(&self->list[id]);
self->usage_map |= bitmask_for_index(id);
}
/**************
* SymbolTable
**************/
static SymbolTable symbol_table_new(void) {
return (SymbolTable) {
.characters = array_new(),
.slices = array_new(),
};
}
static void symbol_table_delete(SymbolTable *self) {
array_delete(&self->characters);
array_delete(&self->slices);
}
static int symbol_table_id_for_name(
const SymbolTable *self,
const char *name,
uint32_t length
) {
for (unsigned i = 0; i < self->slices.size; i++) {
Slice slice = self->slices.contents[i];
if (
slice.length == length &&
!strncmp(&self->characters.contents[slice.offset], name, length)
) return i;
}
return -1;
}
static const char *symbol_table_name_for_id(
const SymbolTable *self,
uint16_t id,
uint32_t *length
) {
Slice slice = self->slices.contents[id];
*length = slice.length;
return &self->characters.contents[slice.offset];
}
static uint16_t symbol_table_insert_name(
SymbolTable *self,
const char *name,
uint32_t length
) {
int id = symbol_table_id_for_name(self, name, length);
if (id >= 0) return (uint16_t)id;
Slice slice = {
.offset = self->characters.size,
.length = length,
};
array_grow_by(&self->characters, length + 1);
memcpy(&self->characters.contents[slice.offset], name, length);
self->characters.contents[self->characters.size - 1] = 0;
array_push(&self->slices, slice);
return self->slices.size - 1;
}
/************
* QueryStep
************/
static QueryStep query_step__new(
TSSymbol symbol,
uint16_t depth,
bool is_immediate
) {
return (QueryStep) {
.symbol = symbol,
.depth = depth,
.field = 0,
.capture_ids = {NONE, NONE, NONE},
.alternative_index = NONE,
.contains_captures = false,
.is_last_child = false,
.is_pass_through = false,
.is_dead_end = false,
.is_definite = false,
.is_immediate = is_immediate,
.alternative_is_immediate = false,
};
}
static void query_step__add_capture(QueryStep *self, uint16_t capture_id) {
for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) {
if (self->capture_ids[i] == NONE) {
self->capture_ids[i] = capture_id;
break;
}
}
}
static void query_step__remove_capture(QueryStep *self, uint16_t capture_id) {
for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) {
if (self->capture_ids[i] == capture_id) {
self->capture_ids[i] = NONE;
while (i + 1 < MAX_STEP_CAPTURE_COUNT) {
if (self->capture_ids[i + 1] == NONE) break;
self->capture_ids[i] = self->capture_ids[i + 1];
self->capture_ids[i + 1] = NONE;
i++;
}
break;
}
}
}
/**********************
* StatePredecessorMap
**********************/
static inline StatePredecessorMap state_predecessor_map_new(const TSLanguage *language) {
return (StatePredecessorMap) {
.contents = ts_calloc(language->state_count * (MAX_STATE_PREDECESSOR_COUNT + 1), sizeof(TSStateId)),
};
}
static inline void state_predecessor_map_delete(StatePredecessorMap *self) {
ts_free(self->contents);
}
static inline void state_predecessor_map_add(
StatePredecessorMap *self,
TSStateId state,
TSStateId predecessor
) {
unsigned index = state * (MAX_STATE_PREDECESSOR_COUNT + 1);
TSStateId *count = &self->contents[index];
if (*count == 0 || (*count < MAX_STATE_PREDECESSOR_COUNT && self->contents[index + *count] != predecessor)) {
(*count)++;
self->contents[index + *count] = predecessor;
}
}
static inline const TSStateId *state_predecessor_map_get(
const StatePredecessorMap *self,
TSStateId state,
unsigned *count
) {
unsigned index = state * (MAX_STATE_PREDECESSOR_COUNT + 1);
*count = self->contents[index];
return &self->contents[index + 1];
}
/****************
* AnalysisState
****************/
static unsigned analysis_state__recursion_depth(const AnalysisState *self) {
unsigned result = 0;
for (unsigned i = 0; i < self->depth; i++) {
TSSymbol symbol = self->stack[i].parent_symbol;
for (unsigned j = 0; j < i; j++) {
if (self->stack[j].parent_symbol == symbol) {
result++;
break;
}
}
}
return result;
}
static inline int analysis_state__compare_position(
const AnalysisState *self,
const AnalysisState *other
) {
for (unsigned i = 0; i < self->depth; i++) {
if (i >= other->depth) return -1;
if (self->stack[i].child_index < other->stack[i].child_index) return -1;
if (self->stack[i].child_index > other->stack[i].child_index) return 1;
}
if (self->depth < other->depth) return 1;
return 0;
}
static inline int analysis_state__compare(
const AnalysisState *self,
const AnalysisState *other
) {
int result = analysis_state__compare_position(self, other);
if (result != 0) return result;
for (unsigned i = 0; i < self->depth; i++) {
if (self->stack[i].parent_symbol < other->stack[i].parent_symbol) return -1;
if (self->stack[i].parent_symbol > other->stack[i].parent_symbol) return 1;
if (self->stack[i].parse_state < other->stack[i].parse_state) return -1;
if (self->stack[i].parse_state > other->stack[i].parse_state) return 1;
if (self->stack[i].field_id < other->stack[i].field_id) return -1;
if (self->stack[i].field_id > other->stack[i].field_id) return 1;
}
if (self->step_index < other->step_index) return -1;
if (self->step_index > other->step_index) return 1;
return 0;
}
static inline AnalysisStateEntry *analysis_state__top(AnalysisState *self) {
return &self->stack[self->depth - 1];
}
static inline bool analysis_state__has_supertype(AnalysisState *self, TSSymbol symbol) {
for (unsigned i = 0; i < self->depth; i++) {
if (self->stack[i].parent_symbol == symbol) return true;
}
return false;
}
/***********************
* AnalysisSubgraphNode
***********************/
static inline int analysis_subgraph_node__compare(const AnalysisSubgraphNode *self, const AnalysisSubgraphNode *other) {
if (self->state < other->state) return -1;
if (self->state > other->state) return 1;
if (self->child_index < other->child_index) return -1;
if (self->child_index > other->child_index) return 1;
if (self->done < other->done) return -1;
if (self->done > other->done) return 1;
if (self->production_id < other->production_id) return -1;
if (self->production_id > other->production_id) return 1;
return 0;
}
/*********
* Query
*********/
// The `pattern_map` contains a mapping from TSSymbol values to indices in the
// `steps` array. For a given syntax node, the `pattern_map` makes it possible
// to quickly find the starting steps of all of the patterns whose root matches
// that node. Each entry has two fields: a `pattern_index`, which identifies one
// of the patterns in the query, and a `step_index`, which indicates the start
// offset of that pattern's steps within the `steps` array.
//
// The entries are sorted by the patterns' root symbols, and lookups use a
// binary search. This ensures that the cost of this initial lookup step
// scales logarithmically with the number of patterns in the query.
//
// This returns `true` if the symbol is present and `false` otherwise.
// If the symbol is not present `*result` is set to the index where the
// symbol should be inserted.
static inline bool ts_query__pattern_map_search(
const TSQuery *self,
TSSymbol needle,
uint32_t *result
) {
uint32_t base_index = self->wildcard_root_pattern_count;
uint32_t size = self->pattern_map.size - base_index;
if (size == 0) {
*result = base_index;
return false;
}
while (size > 1) {
uint32_t half_size = size / 2;
uint32_t mid_index = base_index + half_size;
TSSymbol mid_symbol = self->steps.contents[
self->pattern_map.contents[mid_index].step_index
].symbol;
if (needle > mid_symbol) base_index = mid_index;
size -= half_size;
}
TSSymbol symbol = self->steps.contents[
self->pattern_map.contents[base_index].step_index
].symbol;
if (needle > symbol) {
base_index++;
if (base_index < self->pattern_map.size) {
symbol = self->steps.contents[
self->pattern_map.contents[base_index].step_index
].symbol;
}
}
*result = base_index;
return needle == symbol;
}
// Insert a new pattern's start index into the pattern map, maintaining
// the pattern map's ordering invariant.
static inline void ts_query__pattern_map_insert(
TSQuery *self,
TSSymbol symbol,
uint32_t start_step_index,
uint32_t pattern_index
) {
uint32_t index;
ts_query__pattern_map_search(self, symbol, &index);
// Ensure that the entries are sorted not only by symbol, but also
// by pattern_index. This way, states for earlier patterns will be
// initiated first, which allows the ordering of the states array
// to be maintained more efficiently.
while (index < self->pattern_map.size) {
PatternEntry *entry = &self->pattern_map.contents[index];
if (
self->steps.contents[entry->step_index].symbol == symbol &&
entry->pattern_index < pattern_index
) {
index++;
} else {
break;
}
}
array_insert(&self->pattern_map, index, ((PatternEntry) {
.step_index = start_step_index,
.pattern_index = pattern_index,
}));
}
static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) {
// Identify all of the patterns in the query that have child patterns, both at the
// top level and nested within other larger patterns. Record the step index where
// each pattern starts.
Array(uint32_t) parent_step_indices = array_new();
for (unsigned i = 0; i < self->steps.size; i++) {
QueryStep *step = &self->steps.contents[i];
if (i + 1 < self->steps.size) {
QueryStep *next_step = &self->steps.contents[i + 1];
if (
step->symbol != WILDCARD_SYMBOL &&
step->symbol != NAMED_WILDCARD_SYMBOL &&
next_step->depth > step->depth &&
next_step->depth != PATTERN_DONE_MARKER
) {
array_push(&parent_step_indices, i);
}
}
if (step->depth > 0) {
step->is_definite = true;
}
}
// For every parent symbol in the query, initialize an 'analysis subgraph'.
// This subgraph lists all of the states in the parse table that are directly
// involved in building subtrees for this symbol.
//
// In addition to the parent symbols in the query, construct subgraphs for all
// of the hidden symbols in the grammar, because these might occur within
// one of the parent nodes, such that their children appear to belong to the
// parent.
Array(AnalysisSubgraph) subgraphs = array_new();
for (unsigned i = 0; i < parent_step_indices.size; i++) {
uint32_t parent_step_index = parent_step_indices.contents[i];
TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol;
AnalysisSubgraph subgraph = { .symbol = parent_symbol };
array_insert_sorted_by(&subgraphs, .symbol, subgraph);
}
for (TSSymbol sym = self->language->token_count; sym < self->language->symbol_count; sym++) {
if (!ts_language_symbol_metadata(self->language, sym).visible) {
AnalysisSubgraph subgraph = { .symbol = sym };
array_insert_sorted_by(&subgraphs, .symbol, subgraph);
}
}
// Scan the parse table to find the data needed to populate these subgraphs.
// Collect three things during this scan:
// 1) All of the parse states where one of these symbols can start.
// 2) All of the parse states where one of these symbols can end, along
// with information about the node that would be created.
// 3) A list of predecessor states for each state.
StatePredecessorMap predecessor_map = state_predecessor_map_new(self->language);
for (TSStateId state = 1; state < self->language->state_count; state++) {
unsigned subgraph_index, exists;
LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, state);
while (ts_lookahead_iterator_next(&lookahead_iterator)) {
if (lookahead_iterator.action_count) {
for (unsigned i = 0; i < lookahead_iterator.action_count; i++) {
const TSParseAction *action = &lookahead_iterator.actions[i];
if (action->type == TSParseActionTypeReduce) {
const TSSymbol *aliases, *aliases_end;
ts_language_aliases_for_symbol(
self->language,
action->params.reduce.symbol,
&aliases,
&aliases_end
);
for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) {
array_search_sorted_by(
&subgraphs,
.symbol,
*symbol,
&subgraph_index,
&exists
);
if (exists) {
AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
if (subgraph->nodes.size == 0 || array_back(&subgraph->nodes)->state != state) {
array_push(&subgraph->nodes, ((AnalysisSubgraphNode) {
.state = state,
.production_id = action->params.reduce.production_id,
.child_index = action->params.reduce.child_count,
.done = true,
}));
}
}
}
} else if (action->type == TSParseActionTypeShift && !action->params.shift.extra) {
TSStateId next_state = action->params.shift.state;
state_predecessor_map_add(&predecessor_map, next_state, state);
}
}
} else if (lookahead_iterator.next_state != 0 && lookahead_iterator.next_state != state) {
state_predecessor_map_add(&predecessor_map, lookahead_iterator.next_state, state);
const TSSymbol *aliases, *aliases_end;
ts_language_aliases_for_symbol(
self->language,
lookahead_iterator.symbol,
&aliases,
&aliases_end
);
for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) {
array_search_sorted_by(
&subgraphs,
.symbol,
*symbol,
&subgraph_index,
&exists
);
if (exists) {
AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
if (
subgraph->start_states.size == 0 ||
*array_back(&subgraph->start_states) != state
)
array_push(&subgraph->start_states, state);
}
}
}
}
}
// For each subgraph, compute the preceding states by walking backward
// from the end states using the predecessor map.
Array(AnalysisSubgraphNode) next_nodes = array_new();
for (unsigned i = 0; i < subgraphs.size; i++) {
AnalysisSubgraph *subgraph = &subgraphs.contents[i];
if (subgraph->nodes.size == 0) {
array_delete(&subgraph->start_states);
array_erase(&subgraphs, i);
i--;
continue;
}
array_assign(&next_nodes, &subgraph->nodes);
while (next_nodes.size > 0) {
AnalysisSubgraphNode node = array_pop(&next_nodes);
if (node.child_index > 1) {
unsigned predecessor_count;
const TSStateId *predecessors = state_predecessor_map_get(
&predecessor_map,
node.state,
&predecessor_count
);
for (unsigned j = 0; j < predecessor_count; j++) {
AnalysisSubgraphNode predecessor_node = {
.state = predecessors[j],
.child_index = node.child_index - 1,
.production_id = node.production_id,
.done = false,
};
unsigned index, exists;
array_search_sorted_with(
&subgraph->nodes, analysis_subgraph_node__compare, &predecessor_node,
&index, &exists
);
if (!exists) {
array_insert(&subgraph->nodes, index, predecessor_node);
array_push(&next_nodes, predecessor_node);
}
}
}
}
}
#ifdef DEBUG_ANALYZE_QUERY
printf("\nSubgraphs:\n");
for (unsigned i = 0; i < subgraphs.size; i++) {
AnalysisSubgraph *subgraph = &subgraphs.contents[i];
printf(" %u, %s:\n", subgraph->symbol, ts_language_symbol_name(self->language, subgraph->symbol));
for (unsigned j = 0; j < subgraph->start_states.size; j++) {
printf(
" {state: %u}\n",
subgraph->start_states.contents[j]
);
}
for (unsigned j = 0; j < subgraph->nodes.size; j++) {
AnalysisSubgraphNode *node = &subgraph->nodes.contents[j];
printf(
" {state: %u, child_index: %u, production_id: %u, done: %d}\n",
node->state, node->child_index, node->production_id, node->done
);
}
printf("\n");
}
#endif
// For each non-terminal pattern, determine if the pattern can successfully match,
// and identify all of the possible children within the pattern where matching could fail.
bool result = true;
AnalysisStateSet states = array_new();
AnalysisStateSet next_states = array_new();
AnalysisStateSet deeper_states = array_new();
Array(uint16_t) final_step_indices = array_new();
for (unsigned i = 0; i < parent_step_indices.size; i++) {
uint16_t parent_step_index = parent_step_indices.contents[i];
uint16_t parent_depth = self->steps.contents[parent_step_index].depth;
TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol;
if (parent_symbol == ts_builtin_sym_error) continue;
// Find the subgraph that corresponds to this pattern's root symbol. If the pattern's
// root symbols is not a non-terminal, then return an error.
unsigned subgraph_index, exists;
array_search_sorted_by(&subgraphs, .symbol, parent_symbol, &subgraph_index, &exists);
if (!exists) {
unsigned first_child_step_index = parent_step_index + 1;
uint32_t i, exists;
array_search_sorted_by(&self->step_offsets, .step_index, first_child_step_index, &i, &exists);
assert(exists);
*error_offset = self->step_offsets.contents[i].byte_offset;
result = false;
break;
}
// Initialize an analysis state at every parse state in the table where
// this parent symbol can occur.
AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
array_clear(&states);
array_clear(&deeper_states);
for (unsigned j = 0; j < subgraph->start_states.size; j++) {
TSStateId parse_state = subgraph->start_states.contents[j];
array_push(&states, ((AnalysisState) {
.step_index = parent_step_index + 1,
.stack = {
[0] = {
.parse_state = parse_state,
.parent_symbol = parent_symbol,
.child_index = 0,
.field_id = 0,
.done = false,
},
},
.depth = 1,
}));
}
// Walk the subgraph for this non-terminal, tracking all of the possible
// sequences of progress within the pattern.
bool can_finish_pattern = false;
bool did_exceed_max_depth = false;
unsigned recursion_depth_limit = 0;
unsigned prev_final_step_count = 0;
array_clear(&final_step_indices);
for (;;) {
#ifdef DEBUG_ANALYZE_QUERY
printf("Final step indices:");
for (unsigned j = 0; j < final_step_indices.size; j++) {
printf(" %4u", final_step_indices.contents[j]);
}
printf("\nWalk states for %u %s:\n", i, ts_language_symbol_name(self->language, parent_symbol));
for (unsigned j = 0; j < states.size; j++) {
AnalysisState *state = &states.contents[j];
printf(" %3u: step: %u, stack: [", j, state->step_index);
for (unsigned k = 0; k < state->depth; k++) {
printf(
" {%s, child: %u, state: %4u",
self->language->symbol_names[state->stack[k].parent_symbol],
state->stack[k].child_index,
state->stack[k].parse_state
);
if (state->stack[k].field_id) printf(", field: %s", self->language->field_names[state->stack[k].field_id]);
if (state->stack[k].done) printf(", DONE");
printf("}");
}
printf(" ]\n");
}
#endif
if (states.size == 0) {
if (deeper_states.size > 0 && final_step_indices.size > prev_final_step_count) {
#ifdef DEBUG_ANALYZE_QUERY
printf("Increase recursion depth limit to %u\n", recursion_depth_limit + 1);
#endif
prev_final_step_count = final_step_indices.size;
recursion_depth_limit++;
AnalysisStateSet _states = states;
states = deeper_states;
deeper_states = _states;
continue;
}
break;
}
array_clear(&next_states);
for (unsigned j = 0; j < states.size; j++) {
AnalysisState * const state = &states.contents[j];
// For efficiency, it's important to avoid processing the same analysis state more
// than once. To achieve this, keep the states in order of ascending position within
// their hypothetical syntax trees. In each iteration of this loop, start by advancing
// the states that have made the least progress. Avoid advancing states that have already
// made more progress.
if (next_states.size > 0) {
int comparison = analysis_state__compare_position(state, array_back(&next_states));
if (comparison == 0) {
array_insert_sorted_with(&next_states, analysis_state__compare, *state);
continue;
} else if (comparison > 0) {
while (j < states.size) {
array_push(&next_states, states.contents[j]);
j++;
}
break;
}
}