forked from CheneyYin/Motor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotor.py
180 lines (166 loc) · 7.39 KB
/
motor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name : train
Author : 雨住风停松子落
E-mail :
date : 2019/4/25
Description:
-------------------------------------------------
Change Activity:
2019/4/25:
-------------------------------------------------
"""
__author__ = '雨住风停松子落'
import os
import pandas as pd
import numpy as np
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import GradientBoostingClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import VotingClassifier
# from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from xgboost import XGBClassifier
from sklearn.externals import joblib
from sklearn.utils import shuffle
import warnings
warnings.filterwarnings("ignore")
def build_model(data, mode='train'):
'''
初始化模型,包含各模型使用的特征下标
:param data: 数据集
:param mode: train or test
:return:
'''
filter_features_1 = [data.columns[idx] for idx in
[0, 1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 26, 27, 28, 29,
31, 33, 34, 35, 36, 37, 38, 39, 42]]
filter_features_2 = [data.columns[idx] for idx in
[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43]]
filter_features_3 = [data.columns[idx] for idx in
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]]
if mode == 'train':
ada_clf = AdaBoostClassifier(
RandomForestClassifier(n_estimators=60, max_depth=13, min_samples_split=5,
min_samples_leaf=20, oob_score=True, random_state=0,
class_weight='balanced'),
algorithm="SAMME", n_estimators=1200, learning_rate=0.05
)
bag_clf = BaggingClassifier(
base_estimator=RandomForestClassifier(n_estimators=60, max_depth=13, min_samples_split=5,
min_samples_leaf=20, oob_score=True, random_state=0,
class_weight='balanced'),
n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1,
random_state=0
)
gbdt_clf = GradientBoostingClassifier(
n_estimators=1200, learning_rate=0.05, min_samples_leaf=60, max_depth=10, min_samples_split=5,
subsample=0.7, random_state=0, loss='deviance'
)
lgbm_clf = LGBMClassifier(
boosting_type='gbdt', num_leaves=51, max_depth=-1, learning_rate=0.05, n_estimators=600,
subsample_for_bin=1000, objective='binary', class_weight='balanced', min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0, colsample_bytree=1.0,
reg_alpha=3.5, reg_lambda=1.0, random_state=None, importance_type='gain', silent=True
)
vote_clf = VotingClassifier(
estimators=[
(
'LogisticRegression',
LogisticRegression(penalty='l2', solver='lbfgs', verbose=0)
),
(
'DecisionTreeClassifier', DecisionTreeClassifier()
),
(
'RandomForestClassifier', RandomForestClassifier(
n_estimators=60, max_depth=13, min_samples_split=5, min_samples_leaf=20,
oob_score=True, random_state=0)
),
('GradientBoostingClassifier', GradientBoostingClassifier(n_estimators=1200, verbose=0)),
('GaussianNB', GaussianNB()),
('KNeighborsClassifier', KNeighborsClassifier())
],
voting='soft'
)
xgb_clf = XGBClassifier(
learning_rate=0.01, n_estimators=5000, max_depth=6, min_child_weight=1, gamma=0., subsample=0.8,
colsample_btree=0.8, objective='binary:logistic', scale_pos_weight=1, min_samples_split=5,
min_samples_leaf=60, seed=27, reg_alpha=0.005, random_state=0
)
clfs = {
'AdaBoostClassifier': [ada_clf, filter_features_1],
'BaggingClassifier': [bag_clf, filter_features_1],
'GradientBoostingClassifier': [gbdt_clf, filter_features_2],
'LGBMClassifier': [lgbm_clf, filter_features_3],
'VotingClassifier': [vote_clf, filter_features_1],
'XGBClassifier': [xgb_clf, filter_features_1],
}
elif mode == 'test':
clfs = {
'AdaBoostClassifier': filter_features_1,
'BaggingClassifier': filter_features_1,
'GradientBoostingClassifier': filter_features_2,
'LGBMClassifier': filter_features_3,
'VotingClassifier': filter_features_1,
'XGBClassifier': filter_features_1,
}
else:
raise Exception("mode must be train or test !!")
return clfs
def train(train_data, savedPath, upsampling):
'''
训练
:param train_data:
:param savedPath:
:return:
'''
clfs = build_model(train_data, mode='train')
for clf_name, [clf, filter_features] in clfs.items():
trainData = train_data
for i in range(upsampling[clf_name] - 1):
trainData = pd.concat([trainData, train_data.tail(30)], axis=0)
if clf_name != 'VotingClassifier':
print 'shuffle'
trainData = shuffle(trainData)
# trainData.dropna(inplace=True)
clf.fit(trainData[filter_features], trainData[train_data.columns[45]])
print(clf_name, '\t', clf.score(train_data[filter_features], train_data[train_data.columns[45]]))
joblib.dump(clf, savedPath + clf_name + '.pkl')
def test(test_data, modelPath, savedPath, threshold):
'''
测试
:param test_data:
:param modelPath:
:param savedPath:
:param threshold: 不同方法传入不同阈值
:return:
'''
clfs = build_model(test_data, mode='test')
result = []
idx = 0
for clf_name, filter_features in clfs.items():
clf = joblib.load(modelPath + clf_name + '.pkl')
p_proba = clf.predict_proba(test_data[filter_features])
p_list_midl = [p[1] for p in p_proba]
p_list_midl.sort(reverse=True)
p_list = [1 if p[1] > p_list_midl[int(len(p_list_midl) * threshold[clf_name])] else 0 for p in p_proba]
if idx == 0:
result = p_list
else:
result = [1 if (result[i] == 1 and p_list[i] == 1) else 0 for i in range(5738)]
idx = idx + 1
res_df = pd.DataFrame(data=np.column_stack(
[np.reshape(test_data[test_data.columns[44]], int(test_data[test_data.columns[0]].count())), result]),
columns=['idx', 'result'])
res_df.to_csv(savedPath, index=False)
print("done!")