forked from Oichii/DeepPulse-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhr_cnn_train.py
276 lines (220 loc) · 9.14 KB
/
hr_cnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
2D convolution (HR-CNN) based model training script
"""
from hr_cnn import HrCNN
import pulse_dataset_2d
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=15, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--print-freq', '-p', default=1, type=int,
metavar='N', help='print frequency (default: 20)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--save-dir', dest='save_dir',
help='The directory used to save the trained models',
default='save_temp', type=str)
def train(train_loader, extractor_model, criterion, extractor_optimizer, epoch):
"""
Run one train epoch
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
extractor_model.train()
end = time.time()
for i, (net_input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
net_input = net_input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = extractor_model(net_input)
loss = criterion(output.squeeze(), target).cuda()
# compute gradient and do SGD step
extractor_optimizer.zero_grad()
loss.backward()
extractor_optimizer.step()
loss = loss.float()
# measure accuracy and record loss
losses.update(loss.item(), net_input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
with open('train_log.csv', 'a') as log:
log.write("{}, {}, {}, {}\n".format(losses.val, losses.avg, top1.val, top1.avg))
def validate(val_loader, extractor_model, criterion):
print('validation start ')
"""
Run evaluation
"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
extractor_model.eval()
end = time.time()
for i, (net_input, target) in enumerate(val_loader):
net_input = net_input.cuda(non_blocking=True)
# target = target.squeeze()
# target = target.cuda(non_blocking=True)
target = torch.median(target).cuda(non_blocking=True)
print(net_input.shape)
# compute output
with torch.no_grad():
output = extractor_model(net_input)
loss = criterion(output.squeeze(), target)
output = output.float()
print(output, target)
loss = loss.float()
# measure accuracy and record loss
losses.update(loss.item(), net_input.size(0))
# top1.update(prec1.item(), net_input1.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'
.format(top1=top1))
with open('test_log.csv', 'a') as log:
log.write("{}, {}\n".format(losses.avg, top1.avg))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""
Save the training model
"""
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 2 every 30 epochs"""
lr = args.lr * (0.5 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
seq_list = []
end_indexes = []
global args, best_prec1
best_prec1 = 0
args = parser.parse_args()
# Check the save_dir exists or not
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print("initialize model...")
extractor_model = HrCNN(3)
extractor_model = torch.nn.DataParallel(extractor_model)
extractor_model.cuda()
resume = 'save_temp/extractor_checkpoint_selfattention_1.tar'
cudnn.benchmark = True
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
seqlen = 1
seq_dir = 'E:/Datasets_PULSE/set_all/'
pulse = pulse_dataset_2d.PulseDataset("transfer_train.txt", seq_dir,
transform=transforms.ToTensor())
pulse_test = pulse_dataset_2d.PulseDataset("seq_test.txt", seq_dir,
transform=transforms.ToTensor())
# fig = plt.figure()
# for i in range(len(pulse)):
# sample = pulse[i]
#
# print(i, sample[0].shape, sample[1].shape)
#
# ax = plt.subplot(1, 4, i + 1)
# print(sample[0])
# plt.imshow((sample[0].permute(1,2,0)))
# plt.tight_layout()
# ax.set_title('Sample #{}'.format(i))
# ax.axis('off')
#
# if i == 3:
# plt.show()
# break
train_loader = torch.utils.data.DataLoader(
pulse,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True,
drop_last=True)
val_loader = torch.utils.data.DataLoader(
pulse_test,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True,
drop_last=True)
# define loss function (criterion) and optimizer
criterion = nn.MSELoss()
criterion = criterion.cuda()
extractor_optimizer = torch.optim.SGD(extractor_model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# extractor_optimizer = torch.optim.Adam(extractor_model.parameters(), 0.0001,
# weight_decay=args.weight_decay)
if args.evaluate:
validate(val_loader, extractor_model, criterion)
print('starting training...')
for epoch in range(args.start_epoch, args.epochs):
# adjust_learning_rate(extractor_optimizer, epoch)
# train for one epoch
train(train_loader, extractor_model, criterion, extractor_optimizer, epoch)
# evaluate on validation set
prec1 = validate(val_loader, extractor_model, criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': extractor_model.state_dict(),
'best_prec1': best_prec1,
}, is_best, filename=os.path.join(args.save_dir, 'extractor_checkpoint_selfattention2_{}.tar'.format(epoch)))