forked from stillsame2016/wenokn2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
558 lines (444 loc) · 27.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import re
import uuid
import json
import time
import requests
import sparql_dataframe
import pandas as pd
import geopandas as gpd
from langchain_core.prompts import PromptTemplate
from shapely import wkt
import streamlit as st
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
def get_column_name_parts(column_name):
return re.findall(r'[A-Z]?[a-z]+|[A-Z]+(?=[A-Z]|$)', column_name)
def df_to_gdf(df, dataset_name):
column_names = df.columns.tolist()
geometry_column_names = [x for x in column_names if x.endswith('Geometry')]
df['geometry'] = df[geometry_column_names[0]].apply(wkt.loads)
gdf = gpd.GeoDataFrame(df, geometry='geometry')
gdf.drop(columns=[geometry_column_names[0]], inplace=True)
column_name_parts = get_column_name_parts(column_names[0])
column_name_parts.pop()
gdf.attrs['data_name'] = " ".join(column_name_parts).capitalize()
gdf.label = dataset_name
gdf.id = str(uuid.uuid4())[:8]
gdf.time = time.time()
for column_name in column_names:
tmp_column_name_parts = get_column_name_parts(column_name)
tmp_name = tmp_column_name_parts.pop()
tmp_data_name = " ".join(column_name_parts).capitalize()
if gdf.attrs['data_name'] == tmp_data_name:
gdf.rename(columns={column_name: tmp_name}, inplace=True)
# if tmp_data_name == gdf.attrs['data_name']:
# gdf.rename(columns={column_name: name}, inplace=True)
return gdf
# Function to add a new message to the chat
def process_data_request(message, chat_container):
with chat_container:
with st.chat_message("assistant"):
with st.spinner(f"""We're currently processing your request:
**{message}{'' if message.endswith('.') else '.'}**
Depending on the complexity of the query and the volume of data,
this may take a moment. We appreciate your patience."""):
# generate a sparql query. try up to 5 times because of the LLM limit
max_tries = 5
tried = 0
gdf_empty = False
while tried < max_tries:
try:
response = requests.get(
f"https://sparcal.sdsc.edu/api/v1/Utility/wenokn_llama3?query_text={message}")
data = response.text.replace('\\n', '\n').replace('\\"', '"').replace('\\t', ' ')
if data.startswith("\"```sparql"):
start_index = data.find("```sparql") + len("```sparql")
end_index = data.find("```", start_index)
sparql_query = data[start_index:end_index].strip()
elif data.startswith("\"```code"):
start_index = data.find("```code") + len("```code")
end_index = data.find("```", start_index)
sparql_query = data[start_index:end_index].strip()
elif data.startswith("\"```"):
start_index = data.find("```") + len("```")
end_index = data.find("```", start_index)
sparql_query = data[start_index:end_index].strip()
elif data.startswith('"') and data.endswith('"'):
# Remove leading and trailing double quotes
sparql_query = data[1:-1]
else:
sparql_query = data
sparql_query = sparql_query.replace("\n\n\n", "\n\n")
st.markdown(
"""
<style>
.st-code > pre {
font-size: 0.4em;
}
</style>
""",
unsafe_allow_html=True
)
st.code(sparql_query)
endpoint = "http://132.249.238.155/repositories/wenokn_ohio_all"
df = sparql_dataframe.get(endpoint, sparql_query)
gdf = df_to_gdf(df, message)
if gdf.shape[0] == 0:
# double check
if not gdf_empty:
gdf_empty = True
tried += 1
continue
tried = max_tries + 10
if gdf.shape[0] > 0:
st.session_state.requests.append(message)
st.session_state.sparqls.append(sparql_query)
st.session_state.datasets.append(gdf)
else:
error_info = f"""No data has been loaded for your request **{message}**.
Please refine your request and try it again."""
st.markdown(error_info)
st.session_state.chat.append({"role": "assistant", "content": error_info})
st.rerun()
# st.session_state.chat.append({"role": "assistant",
# "content": "Your request has been processed."})
# st.rerun()
except Exception as e:
st.markdown(f"Encounter an error: {str(e)}.")
st.markdown("Try again...")
# traceback.print_exc()
tried += 1
if tried == max_tries:
error_info = f"""We are not able to process your request **{message}**
at this moment. Please refine your request and try it again."""
st.markdown(error_info)
st.session_state.chat.append({"role": "assistant", "content": error_info})
st.rerun()
def process_data_commons_request(llm, user_input, spatial_datasets):
prompt = PromptTemplate(
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
In Data Commons, dcid is used as index to access data. A dcid has the following format,
for example, "geoid/39" is the dcid for the Ohio State and "geoid/06" is the dcid for the
California State.
We have the following functions to get dcid from a state/county name:
get_dcid_from_state_name(state_name)
get_dcid_from_county_name(county_name)
get_dcid_from_country_name(country_name)
To call get_dcid_from_county_name, the county name must be in the format "San Diego County".
Don't miss "County" in the name.
Data Commons has the following statistical variables available for a particular place:
{dc_variables}
The following are the variables with the data:
{variables}
The following code can fetch some variables data for some dcid from Data Commons:
import datacommons_pandas as dc
def get_time_series_dataframe_for_dcid(dcid_list, variable_name):
_df = dc.build_time_series_dataframe(dcid_list, variable_name)
_df.insert(0, 'Name', _df.index.map(dc.get_property_values(_df.index, 'name')))
_df['Name'] = _df['Name'].str[0]
return _df
[Example 1]
Find the populations for all counties in Ohio, we can run the following code:
# Get dcid for all counties in Ohio
ohio_county_dcid = dc.get_places_in(["geoId/39"], 'County')["geoId/39"]
# Get Count_Person (i.e., population) for all counties in Ohio
df = get_time_series_dataframe_for_dcid(ohio_county_dcid, "Count_Person")
df.title = "The Populations for All Counties in Ohio"
[Example 2]
Find the populations for the Ross county and Pike county in Ohio, we can run the
following code:
ross_pike_dcid = ['geoId/39131', 'geoId/39141']
df = get_time_series_dataframe_for_dcid(ross_pike_dcid, "Count_Person")
df.title = "The Populations for the Ross county and Pike county in Ohio"
[Example 3]
Find the populations of Ross county and Scioto county
ross_scioto_dcid = [ get_dcid_from_county_name('Ross County'), get_dcid_from_county_name('Scioto County') ]
df = get_time_series_dataframe_for_dcid(ross_scioto_dcid, "Count_Person")
df.title = "The Populations for the Ross county and Scioto county in Ohio"
[Example 4]
Given a geodataframe gdf containing all counties Scioto River passes through with a column
"name" for county names. Find the populations of all counties where Scioto River flows through.
scioto_river_dcid = [ get_dcid_from_county_name(county_name) for county_name in gdf['name']]
df = get_time_series_dataframe_for_dcid(scioto_river_dcid, "Count_Person")
df.title = "The Populations for All Counties where Scioto River Flows Through"
If the sample data from st.session.datasets has a county name like 'Ross', then need to convert
it to 'Ross County' to call get_dcid_from_county_name.
[ Question ]
The following is the question from the user:
{question}
Please use pd.merge(df1, df2, on=df1.columns.to_list[:-1]) to merge two dataframes if needed.
Please return only the complete Python code to implement the user's request without preamble or
explanation. Don't include any print statement. Don't add ``` around the code. Make a title and
save the title in df.title.
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
""",
input_variables=["question", "variables", "dc_variables"],
)
df_code_chain = prompt | llm | StrOutputParser()
dc_variables = ""
response = requests.get(f"https://sparcal.sdsc.edu/api/v1/Utility/data_commons?search_terms={user_input}")
items = json.loads(response.text)
for item in items:
dc_variables = f"""{dc_variables}
variable: {item['variable']}
description: {item['name']}
"""
variables = ""
if spatial_datasets:
for index, dataset in enumerate(spatial_datasets):
variables += f"""
st.session_state.datasets[{index}] holds a geodataframe after processing
the request: { st.session_state.datasets[index].label}
The following is the columns of st.session_state.datasets[{index}]:
{ st.session_state.datasets[index].dtypes }
The following is the first 5 rows of the data:
{ st.session_state.datasets[index].head(5).drop(columns='geometry').to_csv(index=False) }
"""
# st.code(variables)
return df_code_chain.invoke({"question": user_input, "variables": variables, "dc_variables": dc_variables})
def process_regulation_request(llm, user_input, chat_container):
VDB_URL = "https://sparcal.sdsc.edu/api/v1/Utility/regulations"
KPDES_URL = "https://sparcal.sdsc.edu/api/v1/Utility/kpdes"
template = PromptTemplate(
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are the expert of National Pollution
Discharge Elimination System (NPDES) and Kentucky Pollutant Discharge Elimination System (KPDES).
The National Pollutant Discharge Elimination System (NPDES) is a regulatory program implemented by the United
States Environmental Protection Agency (EPA) to control water pollution. It was established under the Clean
Water Act (CWA) to address the discharge of pollutants into the waters of the United States.
The NPDES program requires permits for any point source that discharges pollutants into navigable waters,
which include rivers, lakes, streams, coastal areas, and other bodies of water. Point sources are discrete
conveyances such as pipes, ditches, or channels.
Under the NPDES program, permits are issued to regulate the quantity, quality, and timing of the pollutants
discharged into water bodies. These permits include limits on the types and amounts of pollutants that can
be discharged, monitoring and reporting requirements, and other conditions to ensure compliance with water
quality standards and protect the environment and public health.
The goal of the NPDES program is to eliminate or minimize the discharge of pollutants into water bodies,
thereby improving and maintaining water quality, protecting aquatic ecosystems, and safeguarding human health.
It plays a critical role in preventing water pollution and maintaining the integrity of the nation's water
resources.
Based on the provided context, use easy understanding language to answer the question clear and precise with
references and explanations. If the local regulations (for example, KPDES for Kentucky Pollutant Discharge
Elimination System) can be applied, please include the details of both NPDES rules and KPDES rules, and make
clear indications of the sources of the rules.
If no information is provided in the context, return the result as "Sorry I dont know the answer", don't provide
the wrong answer or a contradictory answer.
Context:{context}
Question:{question}?
Answer: <|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
input_variables=["question", "context"],
)
rag_chain = template | llm | StrOutputParser()
with chat_container:
with st.chat_message("assistant"):
with st.spinner("We are in the process of retrieving the relevant provisions "
"to give you the best possible answer."):
if "kentucky" in user_input.lower() or "KPDES" in user_input:
response = requests.get(f"{VDB_URL}?search_terms={user_input}")
datasets = json.loads(response.text)
datasets = datasets[0:4]
context = "NPDES regulations: "
context += "\n".join([dataset["description"] for dataset in datasets])
response = requests.get(f"{KPDES_URL}?search_terms={user_input}")
datasets = json.loads(response.text)
datasets = datasets[0:4]
context += "\nKPDES (Kentucky Pollutant Discharge Elimination System) regulations: "
context += "\n".join([dataset["description"] for dataset in datasets])
else:
response = requests.get(f"{VDB_URL}?search_terms={user_input}")
datasets = json.loads(response.text)
datasets = datasets[0:5]
context = "\n".join([dataset["description"] for dataset in datasets])
result = rag_chain.invoke({"question": user_input, "context": context})
return result
def process_off_topic_request(llm, user_input, chat_container):
template = PromptTemplate(
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an expert of following systems:
1. The WEN-OKN knowledge database
2. National Pollution Discharge Elimination System (NPDES) and Kentucky Pollutant Discharge Elimination System (KPDES)
3. Data Commons.
The WEN-KEN database contains the following entities:
1. Locations of buildings, power stations, and underground storage tanks in Ohio.
2. USA Counties: names and geometry boundaries.
3. USA States: names and geometry boundaries.
4. Earthquakes: Data pertaining to seismic events.
5. Rivers: Comprehensive geometries about rivers in USA.
6. Dams: Information regarding dams' locations in USA.
7. Drought Zones: Identification of drought-affected zones in the years 2020, 2021, and 2022 in USA.
8. Hospitals: Details about hospital locations and information in USA.
The National Pollutant Discharge Elimination System (NPDES) is a regulatory program implemented by the United
States Environmental Protection Agency (EPA) to control water pollution. It was established under the Clean
Water Act (CWA) to address the discharge of pollutants into the waters of the United States.
The NPDES program requires permits for any point source that discharges pollutants into navigable waters,
which include rivers, lakes, streams, coastal areas, and other bodies of water. Point sources are discrete
conveyances such as pipes, ditches, or channels.
Under the NPDES program, permits are issued to regulate the quantity, quality, and timing of the pollutants
discharged into water bodies. These permits include limits on the types and amounts of pollutants that can
be discharged, monitoring and reporting requirements, and other conditions to ensure compliance with water
quality standards and protect the environment and public health.
The goal of the NPDES program is to eliminate or minimize the discharge of pollutants into water bodies,
thereby improving and maintaining water quality, protecting aquatic ecosystems, and safeguarding human health.
It plays a critical role in preventing water pollution and maintaining the integrity of the nation's water
resources.
Data Commons has the following data for counties or states or countries.
Area_FloodEvent
Count_Person (for population)
Count_FireEvent
Count_FlashFloodEvent
Count_FloodEvent
Count_HailEvent
Count_HeatTemperatureEvent
Count_HeatWaveEvent
Count_HeavyRainEvent
CountOfClaims_NaturalHazardInsurance_BuildingStructureAndContents_FloodEvent
Max_Rainfall
Max_Snowfall
SettlementAmount_NaturalHazardInsurance_BuildingContents_FloodEvent
SettlementAmount_NaturalHazardInsurance_BuildingStructureAndContents_FloodEvent
SettlementAmount_NaturalHazardInsurance_BuildingStructure_FloodEvent
Based on the provided context, use easy understanding language to answer the question.
Question:{question}?
Answer: <|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
input_variables=["question"],
)
rag_chain = template | llm | StrOutputParser()
with chat_container:
with st.chat_message("assistant"):
result = rag_chain.invoke({"question": user_input})
return result
def process_table_request(llm, llm2, user_input, index):
prompt = PromptTemplate(
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert of {title} which is loaded in a DataFrame st.session_state.wen_datasets[{index}]
with the following columns and types:
{columns}
The following is the first 5 rows of the data:
{sample}
The data is displayed to the user.
Users can make queries in natural language to request data from this DataFrame, or they may ask other types of
questions.
Please categorize the following user question as either a "Request data" or "Other" in a JSON field "category".
For "Request data", return a python statement in the following format:
other code with with st.session_state.wen_datasets[{index}] only
st.session_state.wen_tables[{index}] = <your expression with st.session_state.wen_datasets[{index}] only>
in the JSON field "answer". Also return a short title by summarizing "{title}" and "{question}" in the JSON field
"title".
Note that you can't use df.resample('Y', on='Time') when the type of df['Time'] is string.
Dont use triple quotes in the JSON string which make the result an invalid JSON string.
For "Other", return a reasonable answer in the JSON field "answer".
Return JSON only without any explanations.
[ Example ]
To find the date with greatest increment for each place, we can use the following code:
if st.session_state.wen_datasets[0] has three columns "Name", "Date" and "Count_Person".
# Sort the dataframe by Name and Date
df_sorted = st.session_state.wen_datasets[0].sort_values(by=['Name', 'Date'])
# Calculate the population difference using groupby and diff
df_sorted['Count_Person_Diff'] = df_sorted.groupby('Name')['Count_Person'].diff()
# Find the year with the greatest increment for each county
max_increment_years = df_sorted.loc[df_sorted.groupby('yName')['Count_Person_Diff'].idxmax()]
# Select only relevant columns
st.session_state.wen_tables[0] = max_increment_years[['Name', 'Date', 'Count_Person_Diff']]
For a column other than "Count_Person", please update the code accordingly.
User question:
{question}
Answer:<|eot_id|><|start_header_id|>assistant<|end_header_id|>
""",
input_variables=["index", "title", "columns", "sample", "question"],
)
df_code_chain = prompt | llm | JsonOutputParser()
df_code_chain2 = prompt | llm2 | JsonOutputParser()
sample_df = st.session_state.wen_datasets[index].head(5)
csv_string = sample_df.to_csv(index=False)
try:
return df_code_chain.invoke({'index': index,
'title': st.session_state.wen_datasets[index].title,
'columns': str(st.session_state.wen_datasets[index].dtypes),
'sample': csv_string,
'question': user_input})
except Exception as e:
st.markdown(str(e))
return df_code_chain2.invoke({'index': index,
'title': st.session_state.wen_datasets[index].title,
'columns': str(st.session_state.wen_datasets[index].dtypes),
'sample': csv_string,
'question': user_input})
def process_energy_atlas_request(llm, user_input, spatial_datasets):
prompt = PromptTemplate(
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
We have the following functions to get coal mines from an ArcGIS Feature Service as a
GeoDataFrame:
load_coal_mines(where_condition)
The returned GeoDataFrame has the following columns:
'geometry', 'OBJECTID', 'MSHA_ID', 'MINE_NAME', 'MINE_TYPE',
'MINE_STATE', 'STATE', 'FIPS_COUNTY', 'MINE_COUNTY', 'PRODUCTION',
'PHYSICAL_UNIT', 'REFUSE', 'Source', 'PERIOD', 'Longitude', 'Latitude'
The values in the column 'STATE' are all in upper case like 'ALABAMA' or 'COLORADO' etc.
The column 'MINE_COUNTY' contains values like 'Walker' or 'Jefferson'.
To get all coal mines, call load_coal_mines with "1 = 1" as where_condition.
The following are the variables with the data:
{variables}
[ Question ]
The following is the question from the user:
{question}
Please return only the complete Python code in the following format to implement the user's request without preamble or
explanation.
gdf = ......
Don't include any print statement. Don't add ``` around the code. Make a title and save the title in gdf.title.
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
""",
input_variables=["question", "variables"],
)
df_code_chain = prompt | llm | StrOutputParser()
variables = ""
if spatial_datasets:
for index, dataset in enumerate(spatial_datasets):
variables += f"""
st.session_state.datasets[{index}] holds a geodataframe after processing
the request: { st.session_state.datasets[index].label}
The following is the columns of st.session_state.datasets[{index}]:
{ st.session_state.datasets[index].dtypes }
The following is the first 5 rows of the data:
{ st.session_state.datasets[index].head(5).drop(columns='geometry').to_csv(index=False) }
"""
# st.code(variables)
return df_code_chain.invoke({"question": user_input, "variables": variables})
def remove_suffixes(place_name):
# Define the pattern to match the suffixes "County", "State", or "City"
pattern = r'\b(County|State|City)\b'
# Use re.sub to remove the matched suffixes
cleaned_name = re.sub(pattern, '', place_name).strip()
# Optionally, remove any extra whitespace
cleaned_name = re.sub(r'\s+', ' ', cleaned_name)
return cleaned_name
def create_new_geodataframe(gdfs, df):
# Create a dictionary to store geometries with "Name" as the key
geometry_dict = {}
# Iterate through each GeoDataFrame in the list
for gdf in gdfs:
for idx, row in gdf.iterrows():
name = row['Name']
geometry = row['geometry']
geometry_dict[name] = geometry
# st.code(geometry_dict.keys())
# Initialize a list to store geometries for the new GeoDataFrame
geometries = []
# Iterate through the DataFrame df to build the new GeoDataFrame
for idx, row in df.iterrows():
name = row['Name']
found = False
for tmp in geometry_dict.keys():
if name == tmp or remove_suffixes(name) == tmp:
geometries.append(geometry_dict[tmp])
found = True
break
if not found:
raise ValueError(f"Geometry not found for name: {name}")
# Create the new GeoDataFrame
new_gdf = gpd.GeoDataFrame(df.copy(), geometry=geometries)
return new_gdf
def load_coal_mines(where):
self_url = "https://services7.arcgis.com/FGr1D95XCGALKXqM/ArcGIS/rest/services/CoalMines_US_EIA/FeatureServer/247"
url_string = self_url + "/query?where={}&returnGeometry=true&outFields={}&f=geojson".format(where, '*')
resp = requests.get(url_string, verify=False)
data = resp.json()
wkid = "4326"
gdf = gpd.GeoDataFrame.from_features(data['features'], crs=f'EPSG:{wkid}')
return gdf