-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrigbook-chapter4.tex
1261 lines (1211 loc) · 60.7 KB
/
trigbook-chapter4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Radian Measure}
%Begin Section 4.1
\section{Radians and Degrees}
So far we have been using degrees as our unit of measurement for angles. However, there is
another way of measuring angles that is often more convenient. The idea is simple: associate a
central angle of a circle with the arc that it intercepts.
Consider a circle of radius $r>0$, as in Figure \ref{fig:radians}. In geometry you learned that
the circumference\index{circumference}\index{circle!circumference} $C$ of the circle is
$C = 2\;\pi\;r$, where $\pi = 3.14159265...$.
\begin{figure}[h]
\centering
\subfloat[][ $\theta = 90\Degrees$]{
\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (1.2);
\fill (0,0) circle (2pt);
\node [below] at (0,0) {$O$};
\draw (0,0) -- (0:1.2);
\node [right] at (0:1.2) {$A$};
\draw (0,0) -- (90:1.2);
\node [above] at (90:1.2) {$B$};
\draw [linecolor,line width=1.5pt] (0:1.2) arc (0:90:1.2);
\fill (0:1.2) circle (2pt);
\fill (90:1.2) circle (2pt);
\node [above] at (90:1.6) {$\wideparen{AB} = \tfrac{1}{4}C = \tfrac{\pi}{2}\,r$};
\node at (45:0.4) {$90\Degrees$};
\draw [dashed,-latex] (0:0.7) arc (0:90:0.7);
\end{tikzpicture}}
\qquad\qquad
\subfloat[][ $\theta = 180\Degrees$]{
\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (1.2);
\fill (0,0) circle (2pt);
\node [below] at (0,0) {$O$};
\draw (0,0) -- (0:1.2);
\node [right] at (0:1.2) {$A$};
\draw (0,0) -- (180:1.2);
\node [left] at (180:1.2) {$B$};
\draw [linecolor,line width=1.5pt] (0:1.2) arc (0:180:1.2);
\fill (0:1.2) circle (2pt);
\fill (180:1.2) circle (2pt);
\node [above] at (90:1.6) {$\wideparen{AB} = \tfrac{1}{2}C = \pi\;r$};
\node at (90:0.4) {$180\Degrees$};
\draw [dashed,-latex] (0:0.7) arc (0:180:0.7);
\end{tikzpicture}}
\qquad\qquad
\subfloat[][ $\theta = 360\Degrees$]{
\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (1.2);
\fill (0,0) circle (2pt);
\node [below] at (0,0) {$O$};
\draw (0,0) -- (0:1.2);
\node [above right] at (0:1.2) {$A$};
\node [below right] at (360:1.2) {$B$};
\draw [linecolor,line width=1.5pt] (0:1.2) arc (0:360:1.2);
\fill (0:1.2) circle (2pt);
\node [above] at (90:1.6) {$\wideparen{AB} = C = 2\;\pi\;r$};
\node at (90:0.4) {$360\Degrees$};
\draw [dashed,-latex] (0:0.7) arc (0:360:0.7);
\end{tikzpicture}}\vspace{-2mm}
\caption[]{\quad Angle $\theta$ and intercepted arc $\wideparen{AB}$ on circle of circumference
$C=2\pi r$}
\label{fig:radians}
\end{figure}
In Figure \ref{fig:radians} we see that a central angle of $90\Degrees$ cuts off an arc of length
$\tfrac{\pi}{2}\,r$, a central angle of $180\Degrees$ cuts off an arc of length $\pi\,r$, and a
central angle of $360\Degrees$ cuts off an arc of length $2\pi\,r$, which is the same as the
circumference of the circle. So associating the central angle with its intercepted arc, we could
say, for example, that
\begin{displaymath}
360\Degrees \quad\text{``equals''}\quad 2\pi\,r \quad\text{(or $2\pi$ `radiuses').}
\end{displaymath}
The radius $r$ was arbitrary, but the $2\pi$ in front of it stays the same. So instead of using
the awkward ``radiuses'' or ``radii'', we use the term \textbf{radians}\index{radians}:
\begin{equation}\label{eqn:deg360rad2pi}
\boxed{360\Degrees ~=~ 2\pi ~~\text{radians}}
\end{equation}
The above relation gives us any easy way to convert between degrees and radians:
\begin{center}\statecomment{\vspace{-5mm}\begin{alignat}{3}
\text{\textbf{Degrees to radians:}}&\quad
x~~\text{degrees}\quad&=\quad \left( \frac{\pi}{180} \;\cdot\; x \right)
~~\text{radians}\label{eqn:deg2rad}\\[2pt]
\text{\textbf{Radians to degrees:}}&\quad
x~~\text{radians}\quad&=\quad \left( \frac{180}{\pi} \;\cdot\; x \right)
~~\text{degrees}\label{eqn:rad2deg}
\end{alignat}}\end{center}
\newpage
Formula (\ref{eqn:deg2rad}) follows by dividing both sides of equation
(\ref{eqn:deg360rad2pi}) by $360$, so that $1\Degrees = \frac{2\pi}{360} = \frac{\pi}{180}$ radians,
then multiplying both sides by $x$. Formula (\ref{eqn:rad2deg}) is similarly derived
by dividing both sides of equation (\ref{eqn:deg360rad2pi}) by $2\pi$ then multiplying both sides
by $x$.
The statement $\theta = 2\pi$ radians is usually abbreviated as $\theta = 2\pi$ rad, or
just $\theta = 2\pi$ when it is clear that we are using radians. When an angle is given as some
multiple of $\pi$, you can assume that the units being used are radians.
\begin{exmp}
Convert $18\Degrees$ to radians.\vspace{1mm}
\par\noindent\textbf{Solution:} Using the conversion formula (\ref{eqn:deg2rad}) for degrees to
radians, we get
\begin{displaymath}
18\Degrees ~=~ \frac{\pi}{180} \;\cdot\; 18 ~=~ \boxed{\frac{\pi}{10} ~~\text{rad}} ~.
\end{displaymath}
\end{exmp}\vspace{-6mm}
\begin{exmp}
Convert $\frac{\pi}{9}$ radians to degrees.\vspace{1mm}
\par\noindent\textbf{Solution:} Using the conversion formula (\ref{eqn:rad2deg}) for radians to
degrees, we get
\begin{displaymath}
\frac{\pi}{9} ~~\text{rad} ~=~ \frac{180}{\pi} \;\cdot\; \frac{\pi}{9} ~=~ \boxed{20\Degrees} ~.
\end{displaymath}
\end{exmp}\vspace{-3mm}
\divider
\vspace{-3mm}
\begin{table}[h]\centering
\caption{\quad \textbf{Commonly used angles in radians}}\vspace{3mm}
\renewcommand\arraystretch{2.0}
\begin{tabular}{|rc|rc|rc|rc|}
\hline
Degrees & Radians & Degrees & Radians & Degrees & Radians & Degrees & Radians\\
\hline
$0\Degrees$ & $0$ & $90\Degrees$ & $\dfrac{\pi}{2}$ & $180\Degrees$ & $\pi$ & $270\Degrees$ & $\dfrac{3\pi}{2}$\\[4pt]
\hline
$30\Degrees$ & $\dfrac{\pi}{6}$ & $120\Degrees$ & $\dfrac{2\pi}{3}$ & $210\Degrees$ & $\dfrac{7\pi}{6}$ & $300\Degrees$ & $\dfrac{5\pi}{3}$\\[4pt]
\hline
$45\Degrees$ & $\dfrac{\pi}{4}$ & $135\Degrees$ & $\dfrac{3\pi}{4}$ & $225\Degrees$ & $\dfrac{5\pi}{4}$ & $315\Degrees$& $\dfrac{7\pi}{4}$\\[4pt]
\hline
$60\Degrees$ & $\dfrac{\pi}{3}$ & $150\Degrees$ & $\dfrac{5\pi}{6}$ & $240\Degrees$ & $\dfrac{4\pi}{3}$ & $330\Degrees$ & $\dfrac{11\pi}{6}$\\[4pt]
\hline
\end{tabular}\label{tbl:radians}
\end{table}\vspace{-1mm}
\piccaption[]{\label{fig:raddefn}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (1.2);
\fill (0,0) circle (2pt);
\node [below] at (0,0) {$O$};
\draw (0,0) -- (0:1.2) node[below,midway] {$r$};
\draw (0,0) -- (57.3:1.2);
\draw [linecolor,line width=1.5pt] (0:1.2) arc (0:57.3:1.2);
\fill (0:1.2) circle (2pt);
\fill (57.3:1.2) circle (2pt);
\node [above right] at (28:1.2) {$r$};
\node at (28:0.4) {$\theta$};
\draw [dashed,-latex] (0:0.7) arc (0:57.3:0.7);
\node [below] at (270:1.2) {$\theta = 1$ radian};
\end{tikzpicture}}
\picskip{5}
Table \ref{tbl:radians} shows the conversion between degrees and radians for some common angles.
Using the conversion formula (\ref{eqn:rad2deg}) for radians to degrees, we see that
\begin{displaymath}
1 ~~\text{radian} ~~=~~ \frac{180}{\pi}~~\text{degrees} ~~\approx~~ 57.3\Degrees ~.
\end{displaymath}
\picskip{2}
Formally, a radian is defined as the central angle in a circle of radius $r$ which intercepts an arc
of length $r$, as in Figure \ref{fig:raddefn}. This definition does not depend on the choice of $r$
(imagine resizing Figure \ref{fig:raddefn}).
\newpage
One reason why radians are used is that the scale is smaller than for degrees.
One revolution in radians is $2\pi \approx 6.283185307$, which is much smaller
than $360$, the number of degrees in one revolution. The smaller scale makes the graphs of
trigonometric functions (which we will discuss in Chapter 5) have similar scales for the horizontal
and vertical axes.
Another reason is that often in physical applications the variables being used are in terms of
arc length, which makes radians a natural choice.
The default mode in most scientific calculators is to use degrees for entering angles. On many
calculators there is a button labeled {\setlength\fboxsep{2pt}\ovalbox{\footnotesize DRG}} for
switching between degree mode (D),
radian mode (R), and \emph{gradian}\index{gradian} mode (G).\footnote{A gradian is defined as
$\tfrac{1}{400}$ of a circle, i.e. there are $400$ gradians in one revolution. Compared to the
more common $360\Degrees$ in one revolution, gradians appear to be easier to work with, since a
right angle is $100$ gradians (thus making integer multiples of a right angle easier to remember).
Outside of a few specialized areas (e.g. artillery calculations), gradians are nevertheless not
widely used today.} On some graphing calculators, such as the the TI-83, there is a
{\setlength\fboxsep{2pt}\ovalbox{\footnotesize MODE}} button for changing between degrees and
radians. Make sure that your calculator is in the correct angle mode \emph{before} entering angles,
or your answers will likely be way off. For example,
\begin{align*}
\sin\;4\Degrees ~&=~ \phantom{-}0.0698 ~,\\
\sin\;(4~\text{rad}) ~&=~ -0.7568 ~,
\end{align*}
so the values are not only off in magnitude, but do not even have the same sign.
Using your calculator's {\setlength\fboxsep{1pt}\ovalbox{\footnotesize $\sin^{-1}$}},
{\setlength\fboxsep{1pt}\ovalbox{\footnotesize $\cos^{-1}$}}, and
{\setlength\fboxsep{1pt}\ovalbox{\footnotesize $\tan^{-1}$}} buttons in radian mode will of course
give you the angle as a decimal, not an expression in terms of $\pi$.
You should also be aware that the math functions in many computer programming languages use
radians, so you would have to write your own angle conversions.\footnote{One exception is Octave,
which has functions cosd(), sind(), tand() that take angles in degrees as parameters, in addition to
the usual cos(), sin(), tan() functions which use radians.}
\divider
\vspace{2mm}
\startexercises\label{sec4dot1}
\vspace{5mm}
{\small
\par\noindent For Exercises 1-5, convert the given angle to radians.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{5}
\item $4\Degrees$
\item $15\Degrees$
\item $130\Degrees$
\item $275\Degrees$
\item $-108\Degrees$
\end{multicols}
\suspend{enumerate}
For Exercises 6-10, convert the given angle to degrees.
\resume{enumerate}[{[\bfseries 1.]}]
\begin{multicols}{5}
\item $4$ rad
\item $\dfrac{\pi}{5}$ rad
\item $\dfrac{11\pi}{9}$ rad
\item $\dfrac{29\pi}{30}$ rad
\item $35$ rad
\end{multicols}
\item\label{exer:cosxeqx}
Put your calculator in radian mode and take the cosine of $0$. Whatever the answer is, take
its cosine. Then take the cosine of the new answer. Keep repeating this. On most calculators after
about $50$-$60$ iterations you should start to see the same answer repeating. What is that
number? Try starting with a number different from $0$. Do you get the same answer repeating after
roughly the same number of iterations as before? Try the same procedure in degree mode, starting
with $0\Degrees$. Does the same thing happen? If so, does it take fewer iterations for the answer
to start repeating than in radian mode, or more?
\end{enumerate}}
\newpage
%Begin Section 4.2
\section{Arc Length}
In Section 4.1 we saw that one revolution has a radian measure of $2\pi$ rad. Note that $2\pi$
is the ratio of the circumference (i.e. total arc length) $C$ of a circle to its radius $r$:
\begin{displaymath}
\text{Radian measure of 1 revolution} ~=~ 2\pi ~=~ \frac{2\pi\,r}{r} ~=~
\frac{C}{r} ~=~ \frac{\text{total arc length}}{\text{radius}}
\end{displaymath}
Clearly, that ratio is independent of $r$.\index{arc length}
In general, the radian measure of an angle is the ratio of the arc length cut off by the
corresponding central angle in a circle to the radius of the circle, independent of the radius.
To see this, recall our formal definition of a radian: the central angle in a circle of radius $r$
which intercepts an arc of length $r$. So suppose that we have a circle of radius $r$ and we place
a central angle with radian measure $1$ on top of another central angle with radian measure $1$, as
in Figure \ref{fig:arclendef}(a). Clearly, the combined central angle of the two
angles has radian measure $1+1=2$, and the combined arc length is $r+r=2r$.
\begin{figure}[h]
\centering
\subfloat[][ $2$ radians]{
\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (2);
\draw (0,0) -- (57.3:2);
\draw [linecolor,dashed] (0,0) -- (114.6:2);
\draw [linecolor,line width=1.5pt] (0:2) arc (0:114.6:2);
\fill (0,0) circle (2pt);
\fill (0:2) circle (2pt);
\fill (57.3:2) circle (2pt);
\fill (114.6:2) circle (2pt);
\node [above right] at (28:2) {$r$};
\node [above right] at (84:2) {$r$};
\node at (28:0.4) {$1$};
\draw [dashed,-latex] (0:0.7) arc (0:57.3:0.7);
\node at (84:0.4) {$1$};
\draw [dashed,-latex] (57.3:0.7) arc (57.3:114.6:0.7);
\node at (90:1.3) {$2$};
\draw [linecolor,line width=0.5pt,dashed,-latex] (0:1.1) arc (0:114.6:1.1);
\draw (0,0) -- (0:2) node[below,midway] {$r$};
\end{tikzpicture}}
\qquad\qquad\qquad
\subfloat[][ $\tfrac{1}{2}$ radian]{
\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (2);
\draw (0,0) -- (57.3:2);
\draw [linecolor,dashed] (0,0) -- (28.65:2);
\draw [linecolor,line width=1.5pt] (0:2) arc (0:57.3:2);
\fill (0,0) circle (2pt);
\fill (0:2) circle (2pt);
\fill (57.3:2) circle (2pt);
\fill (28.65:2) circle (2pt);
\node [above right] at (14:2) {$r/2$};
\node [above right] at (42:2) {$r/2$};
\node at (14:0.9) {$1/2$};
\draw [linecolor,dashed,-latex] (0:1.2) arc (0:28.65:1.2);
\node at (42:1.3) {$1$};
\draw [dashed,-latex] (0:1.5) arc (0:57.3:1.5);
\draw (0,0) -- (0:2) node[below,midway] {$r$};
\end{tikzpicture}}\vspace{-2mm}
\caption[]{\quad Radian measure and arc length}
\label{fig:arclendef}
\end{figure}
Now suppose that we cut the angle with radian measure $1$ in half, as in Figure
\ref{fig:arclendef}(b).
Clearly, this cuts the arc length $r$ in half as well. Thus, we see that
\begin{alignat*}{4}
\text{Angle} ~&=~ 1~\text{radian} \quad&\Rightarrow\quad \text{arc length} ~&=~ r ~,\\
\text{Angle} ~&=~ 2~\text{radians} \quad&\Rightarrow\quad \text{arc length} ~&=~ 2\,r ~,\\
\text{Angle} ~&=~ \tfrac{1}{2}~\text{radian} \quad&\Rightarrow\quad \text{arc length} ~&=~
\tfrac{1}{2}\,r ~,\\
\intertext{and in general, for any $\theta \ge 0$,}
\text{Angle} ~&=~ \theta~\text{radians} \quad&\Rightarrow\quad \text{arc length} ~&=~ \theta\,r ~,
\end{alignat*}
so that
\begin{displaymath}
\theta ~=~ \frac{\text{arc length}}{\text{radius}} ~~.
\end{displaymath}
\newpage
Intuitively, it is obvious that shrinking or magnifying a circle preserves the measure of a
central angle even as the radius changes. The above discussion says more, namely that the ratio
of the length $s$ of an intercepted arc to the radius $r$ is preserved, precisely because that
ratio is the measure of the central angle in radians (see Figure \ref{fig:radianratio}).
\begin{figure}[h]
\centering
\subfloat[][ Angle $\theta$, radius $r$]{
\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (1.2);
\fill (0,0) circle (2pt);
\node [below] at (0,0) {$O$};
\draw (0,0) -- (0:1.2) node[below,midway] {$r$};
\draw (0,0) -- (65:1.2);
\draw [linecolor,line width=1.5pt] (0:1.2) arc (0:65:1.2);
\fill (0:1.2) circle (2pt);
\fill (65:1.2) circle (2pt);
\node [above right] at (32:1.2) {$s=r\theta$};
\node at (32:0.4) {$\theta$};
\draw [dashed,-latex] (0:0.7) arc (0:65:0.7);
\end{tikzpicture}}
\qquad\qquad\qquad
\subfloat[][ Angle $\theta$, radius $r'$]{
\begin{tikzpicture}[scale=1.5,every node/.style={font=\small}]
\draw (0,0) circle (1.2);
\fill (0,0) circle (1.33pt);
\node [below] at (0,0) {$O$};
\draw (0,0) -- (0:1.2) node[below,midway] {$r'$};
\draw (0,0) -- (65:1.2);
\draw [linecolor,line width=1.5pt] (0:1.2) arc (0:65:1.2);
\fill (0:1.2) circle (1.33pt);
\fill (65:1.2) circle (1.33pt);
\node [above right] at (32:1.2) {$s=r'\theta$};
\node at (32:0.4) {$\theta$};
\draw [dashed,-latex] (0:0.7) arc (0:65:0.7);
\end{tikzpicture}}\vspace{-1mm}
\caption[]{\quad Circles with the same central angle, different radii}
\label{fig:radianratio}
\end{figure}
We thus get a simple formula for the length of an arc:\index{arc length}
\begin{center}\statecomment{In a circle of radius $r$, let $s$ be the length of an arc intercepted
by a central angle with radian measure $\theta \ge 0$. Then the arc length $s$ is:
\begin{equation}\label{eqn:arclen}
s ~=~ r\,\theta
\end{equation}}\end{center}
\begin{exmp}
In a circle of radius $r=2$ cm, what is the length $s$ of the arc intercepted by a central angle of
measure $\theta = 1.2$ rad\,?\vspace{1mm}
\par\noindent\textbf{Solution:} Using formula (\ref{eqn:arclen}), we get:
\begin{displaymath}
s ~=~ r\,\theta ~=~ (2)\,(1.2) ~=~ \boxed{2.4~\text{cm}}
\end{displaymath}
\end{exmp}
\begin{exmp}
In a circle of radius $r=10$ ft, what is the length $s$ of the arc intercepted by a central angle
of measure $\theta = 41\Degrees\;$?\vspace{1mm}
\par\noindent\textbf{Solution:} Using formula (\ref{eqn:arclen}) blindly with $\theta = 41\Degrees$,
we would get $\;s = r\,\theta = (10)\,(41) = 410$ ft. But this impossible, since a circle of
radius $10$ ft has a circumference of only $2\pi\,(10) \approx 62.83$ ft! Our error was in using
the angle $\theta$ measured in \emph{degrees}, not \emph{radians}. So first convert $\theta =
41\Degrees$ to radians, then use $s=r\,\theta$:
\begin{displaymath}
\theta = 41\Degrees ~=~ \frac{\pi}{180} \;\cdot\; 41 ~=~ 0.716~\text{rad}
\quad\Rightarrow\quad s ~=~ r\,\theta ~=~ (10)\,(0.716) ~=~ \boxed{7.16~\text{ft}}
\end{displaymath}
\end{exmp}
\divider
\vspace{1mm}
Note that since the arc length $s$ and radius $r$ are usually given in the same units, radian
measure is really unitless, since you can think of the units canceling in the ratio $\frac{s}{r}$,
which is just $\theta$. This is another reason why radians are so widely used.
\newpage
\begin{exmp}
A central angle in a circle of radius $5$ m cuts off an arc of length $2$ m.
What is the measure of the angle in radians? What is the measure in degrees?\vspace{1mm}
\par\noindent\textbf{Solution:} Letting $r=5$ and $s=2$ in formula (\ref{eqn:arclen}), we get:
\begin{displaymath}
\theta ~=~ \frac{s}{r} ~=~ \frac{2}{5} ~=~ \boxed{0.4~\text{rad}}
\end{displaymath}
In degrees, the angle is:
\begin{displaymath}
\theta = 0.4~\text{rad} ~=~ \frac{180}{\pi} \;\cdot\; 0.4 ~=~ \boxed{22.92\Degrees}
\end{displaymath}
\end{exmp}
\divider
\vspace{1mm}
For central angles $\theta > 2\pi$ rad, i.e. $\theta > 360\Degrees$, it may not be clear what is
meant by the intercepted arc, since the angle is larger than one revolution and hence ``wraps
around'' the circle more than once. We will take the approach that such an arc consists of the full
circumference plus any additional arc length determined by the angle. In other words, formula
(\ref{eqn:arclen}) is still valid for angles $\theta > 2\pi$ rad.
What about negative angles? In this case using $s=r\,\theta$ would mean that the arc length is
negative, which violates the usual concept of length. So we will adopt the convention of only using
nonnegative central angles when discussing arc length.
\begin{exmp}
\piccaption[]{\label{fig:rope}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small}]
\draw (0,0) circle (1);
\draw (-1.5,2) -- (-1.5,-2);
\draw [dashed] (-1.5,0) -- (1,0);
\draw [dashed] (0,0) -- (-1.5,2);
\draw [dashed] (0,0) -- (60.5:1) node [left,pos=0.75] {$2$};
\draw [linecolor,line width=1.5pt] (-1.5,2) -- (60.5:1) arc (60:-60:1) -- (-1.5,-2);
\fill (-1.5,2) circle (2pt);
\node [above] at (-1.5,2) {$A$};
\node [above right] at (60.5:1) {$B$};
\node [left] at (-1.5,0) {$D$};
\node [right] at (0:1) {$C$};
\node [below] at (0,0) {$E$};
\node [below] at (-1.25,0) {$3$};
\node [left] at (-1.5,1) {$4$};
\node [left] at (-1.5,-1) {$4$};
\node at (0.3,0.2) {$\theta$};
\fill (-1.5,-2) circle (2pt);
\end{tikzpicture}}
\noindent A rope is fastened to a wall in two places $8$ ft apart at the same height. A cylindrical container
with a radius of $2$ ft is pushed away from the wall as far as it can go while being held in by
the rope, as in Figure \ref{fig:rope} which shows the top view. If the center of the
container is $3$ feet away from the point on the wall midway between the ends of the rope, what
is the length $L$ of the rope?\vspace{1mm}
\par\noindent\textbf{Solution:} We see that, by symmetry, the total length of the rope is
$\;L = 2\;(AB + \wideparen{BC})$.
Also, notice that $\triangle\,ADE$ is a right triangle, so the hypotenuse
has length $AE = \sqrt{DE^2 + DA^2} = \sqrt{3^2 + 4^2} = 5$ ft, by the Pythagorean Theorem.
Now since $\overline{AB}$ is tangent to the circular container, we know that $\angle\,ABE$ is a
right angle. So by the Pythagorean Theorem we have
\begin{displaymath}
AB ~=~ \sqrt{AE^2 - BE^2} ~=~ \sqrt{5^2 - 2^2} ~=~ \sqrt{21} ~\text{ft}.
\end{displaymath}
\noindent By formula (\ref{eqn:arclen}) the arc $\wideparen{BC}$ has length $BE \cdot \theta$,
where $\theta = \angle\,BEC$ is the supplement of $\angle\,AED + \angle\,AEB$. So since
\begin{displaymath}
\tan\,\angle\,AED ~=~ \frac{4}{3} ~\Rightarrow~ \angle\,AED ~=~ 53.1\Degrees \quad\text{and}\quad
\cos\,\angle\,AEB ~=~ \frac{BE}{AE} ~=~ \frac{2}{5} ~\Rightarrow~ \angle\,AEB ~=~ 66.4\Degrees ~,
\end{displaymath}
we have
\begin{displaymath}
\theta ~=~ \angle\,BEC ~=~ 180\Degrees \;-\; (\angle\,AED + \angle\,AEB) ~=~ 180\Degrees \;-\;
(53.1\Degrees + 66.4\Degrees) ~=~ 60.5\Degrees ~.
\end{displaymath}
Converting to radians, we get $\;\theta = \frac{\pi}{180} \;\cdot\; 60.5 = 1.06$ rad. Thus,
\begin{displaymath}
L ~=~ 2\,(AB \;+\; \cdot \wideparen{BC}) ~=~ 2\,(\sqrt{21} \;+\; BE \cdot \theta) ~=~
2\,(\sqrt{21} \;+\; (2)\,( 1.06)) ~=~ \boxed{13.4 ~\text{ft}} ~.
\end{displaymath}
\end{exmp}
\divider
\newpage
\begin{exmp}\label{exmp:pulleys}
The centers of two belt pulleys, with radii of $5$ cm and $8$ cm, respectively, are $15$ cm apart.
Find the total length $L$ of the belt around the pulleys.\vspace{1mm}
\par\noindent\textbf{Solution:} In Figure \ref{fig:pulley} we see that, by symmetry,
$\;L = 2\;(\wideparen{DE} + EF + \wideparen{FG})$.
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=0.8,every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (2.5);
\draw [line width=1pt] (7.5,0) circle (4);
\draw [dashed] (7.5,0) circle (1.5);
\draw [dashed] (0,0) -- ++(11.54:7.348);
\draw [dashed] (-2.5,0) -- (0,0) node [left,pos=0.0] {$D$};
\draw [dashed] (11.5,0) -- (7.5,0) node [right,pos=0.0] {$G$};
\draw [dashed] (101.54:2.5) -- (0,0) -- (7.5,0) -- ++(101.54:4) node[right,pos=0.22] {$3$}
node[right,pos=0.7] {$5$} node[above left,pos=0.375] {$C$} node[above,pos=1.0] {$F$};
\node [left] at (101.54:1.25) {$5$};
\node [below] at (0,0) {$A$};
\node [below] at (7.5,0) {$B$};
\node [above] at (101.54:2.5) {$E$};
\begin{scope}[>=latex]
\draw [dashed,|<->|] (0,-0.85) -- (7.5,-0.85) node[pos=0.4,fill=white] {$15$};
\end{scope}
\draw [linecolor,line width=1.5pt] (258.46:2.5) arc (258.46:101.54:2.5) --
([shift={(7.5,0)}] 101.54:4) arc (101.54:-101.54:4) -- (258.46:2.5);
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Belt pulleys with radii $5$ cm and $8$ cm}
\label{fig:pulley}
\end{figure}
First, at the center $B$ of the pulley with radius $8$, draw a circle of radius $3$, which is the
difference in the radii of the two pulleys. Let $C$ be the point where this circle intersects
$\overline{BF}$. Then we know that the tangent line $\overline{AC}$ to
this smaller circle is perpendicular to the line segment $\overline{BF}$. Thus,
$\angle\,ACB$ is a right angle, and so the length of $\overline{AC}$ is
\begin{displaymath}
AC ~=~ \sqrt{AB^2 - BC^2} ~=~ \sqrt{15^2 - 3^2} ~=~ \sqrt{216} ~=~ 6\,\sqrt{6}
\end{displaymath}
by the Pythagorean Theorem. Now since $\overline{AE} \perp \overline{EF}$ and
$\overline{EF} \perp \overline{CF}$ and $\overline{CF} \perp \overline{AC}$, the quadrilateral
$AEFC$ must be a rectangle. In particular, $EF = AC$, so $EF = 6\,\sqrt{6}$.
By formula (\ref{eqn:arclen}) we know that $\;\wideparen{DE} = EA \cdot \angle\,DAE\;$ and
$\;\wideparen{FG} = BF \cdot \angle\,GBF$, where the angles are measured in radians. So thinking
of angles in radians (using $\pi$ rad $= 180\Degrees$), we see from Figure \ref{fig:pulley} that
\begin{displaymath}
\angle\,DAE ~=~ \pi \;-\; \angle\,EAC \;-\; \angle\,BAC ~=~ \pi \;-\; \frac{\pi}{2} \;-\;
\angle\,BAC ~=~ \frac{\pi}{2} \;-\; \angle\,BAC ~,
\end{displaymath}
where
\begin{displaymath}
\sin\;\angle\,BAC ~=~ \frac{BC}{AB} ~=~ \frac{3}{15} ~=~ 0.2 \quad\Rightarrow\quad
\angle\,BAC ~=~ 0.201~\text{rad.}
\end{displaymath}
Thus, $\;\angle\,DAE = \frac{\pi}{2} \,-\, 0.201 = 1.37$ rad. So since $\overline{AE}$ and
$\overline{BF}$ are parallel, we have $\;\angle\,ABC = \angle\,DAE = 1.37$ rad. Thus,
$\;\angle\,GBF = \pi \,-\, \angle\,ABC = \pi \,-\, 1.37 = 1.77$ rad. Hence,
\begin{displaymath}
L ~=~ 2\;(\wideparen{DE} \;+\; EF \;+\; \wideparen{FG}) ~=~ 2\;(5\;(1.37) \;+\; 6\,\sqrt{6} \;+\;
8\;(1.77)) ~=~ \boxed{71.41~\text{cm}} ~.
\end{displaymath}
\end{exmp}
\divider
\newpage
\startexercises\label{sec4dot2}
\vspace{5mm}
{\small
\par\noindent For Exercises 1-4, find the length of the arc cut off by the given central angle
$\theta$ in a circle of radius $r$.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{3}
\item $\theta=0.8$ rad, $r=12$ cm
\item $\theta=171\Degrees$, $r=8$ m
\item $\theta=\pi$ rad, $r=11$ in
\end{multicols}
\item A central angle in a circle of radius $2$ cm cuts off an arc of length $4.6$ cm.
What is the measure of the angle in radians? What is the measure of the angle in degrees?
\item The centers of two belt pulleys, with radii of $3$ inches and $6$ inches, respectively, are
$13$ inches apart. Find the total length $L$ of the belt around the pulleys.
\item\label{exer:wallpulley1} In Figure \ref{fig:exerwallpulley1} one end of a $4$ ft iron rod is
attached to the center of a pulley with radius $0.5$ ft. The other end is attached at a
$40\Degrees$ angle to a wall, at a spot $6$ ft above the lower end of a steel wire supporting a
box. The other end of the wire comes out of the wall straight across from the top of the pulley.
Find the length $L$ of the wire from the wall to the box.
\begin{figure}[h]
\begin{minipage}[t]{7.5cm}
\begin{center}
\begin{tikzpicture}[scale=0.7,every node/.style={font=\small}]
\fill [brickcolor] (-2.57,0.5) -- (-2.57,-7) -- (-3.5,-7) -- (-3.5,0.5) -- (-2.57,0.5);
\pattern[pattern color=white,pattern=bricks] (-2.57,0.5) -- (-2.57,-7) -- (-3.5,-7) -- (-3.5,0.5)
-- (-2.57,0.5);
\draw [line width=1pt] (0,0) circle (0.5);
\draw [line width=1pt] (-2.57,-3.06) -- (0,0) node[pos=0.6,below] {$4$};
\draw [linecolor,line width=1.5pt] (-2.57,0.5) -- (90:0.5) arc (90:0:0.5) -- (0.5,-6);
\draw [line width=1pt] (-2.57,0.5) -- (-2.57,-7) -- (1.5,-7);
\fill (0,0) circle (2pt);
\node [right] at (-2.7,-2.16) {$40\Degrees$};
\draw [dashed] ([shift={(-2.57,-3.06)}] 90:1.4) arc (90:50:1.4);
\begin{scope}[>=latex]
\draw [dashed,|<->|] (-3,-3.06) -- (-3,-6) node[pos=0.5,left] {$6$};
\end{scope}
\filldraw [line width=1pt,fill=blockcolor] (0,-6.5) rectangle (1,-6);
\end{tikzpicture}\vspace{-5mm}
\end{center}
\caption[]{\quad Exercise \ref{exer:wallpulley1}}
\label{fig:exerwallpulley1}
\end{minipage}
\begin{minipage}[t]{7.5cm}
\begin{center}
\begin{tikzpicture}[scale=0.7,every node/.style={font=\small}]
\fill [brickcolor] (-2.57,0.5) -- (-2.57,-7) -- (-3.5,-7) -- (-3.5,0.5) -- (-2.57,0.5);
\pattern[pattern color=white,pattern=bricks] (-2.57,0.5) -- (-2.57,-7) -- (-3.5,-7) -- (-3.5,0.5)
-- (-2.57,0.5);
\draw [line width=1pt] (0,0) circle (0.5);
\draw [line width=1pt] (-2.57,-3.06) -- (0,0) node[pos=0.6,below] {$4$};
\draw [linecolor,line width=1.5pt] (-2.57,-1.06) -- (122.77:0.5) arc (122.77:0:0.5) -- (0.5,-6);
\draw [line width=1pt] (-2.57,0.5) -- (-2.57,-7) -- (1.5,-7);
\fill (0,0) circle (2pt);
\node [right] at (-2.7,-2.16) {$40\Degrees$};
\draw [dashed] ([shift={(-2.57,-3.06)}] 90:1.4) arc (90:50:1.4);
\begin{scope}[>=latex]
\draw [dashed,|<->|] (-3,-1.06) -- (-3,-3.06) node[pos=0.5,left] {$2$};
\draw [dashed,<->|] (-3,-3.06) -- (-3,-6) node[pos=0.5,left] {$6$};
\end{scope}
\filldraw [line width=1pt,fill=blockcolor] (0,-6.5) rectangle (1,-6);
\end{tikzpicture}\vspace{-5mm}
\end{center}
\caption[]{\quad Exercise \ref{exer:wallpulley2}}
\label{fig:exerwallpulley2}
\end{minipage}
\end{figure}\vspace{-2mm}
\item\label{exer:wallpulley2} Figure \ref{fig:exerwallpulley2} shows the same setup as in
Exercise \ref{exer:wallpulley1} but now the wire comes out of the wall $2$ ft above where the
rod is attached. Find the length $L$ of the wire from the wall to the box.
\piccaption[]{\label{fig:figure8}}\parpic[r]{\begin{tikzpicture}[scale=0.5,
every node/.style={font=\small}]
\draw [dashed] (0,0) circle (2);
\draw [dashed] (10,0) circle (2);
\draw [dashed] (0,0) -- (66.42:2) node[midway,left] {$2$};
\draw [dashed] (10,0) -- ++(113.58:2) node[midway,right] {$2$};
\draw [dashed] (0,0) -- (10,0);
\fill (0,0) circle (2.5pt);
\fill (10,0) circle (2.5pt);
\node [below] at (0,0) {$A$};
\node [below] at (10,0) {$B$};
\begin{scope}[>=latex]
\draw [dashed,|<->|] (0,-1.1) -- (10,-1.1) node[pos=0.5,fill=white] {$10$};
\end{scope}
\draw [linecolor,line width=1.5pt] (293.58:2) arc (293.58:66.42:2) --
([shift={(10,0)}] -113.58:2) arc (-113.58:113.58:2) -- (293.58:2);
\end{tikzpicture}}
\item\label{exer:figure8len} Find the total length $L$ of the figure eight shape in Figure
\ref{fig:figure8}.
\item Repeat Exercise \ref{exer:figure8len} but with the circle at $A$ having a radius of $3$
instead of $2$. (\emph{Hint: Draw a circle of radius $5$ centered at $A$, then draw a tangent
line to that circle from $B$.})
\suspend{enumerate}
\resume{enumerate}[{[\bfseries 1.]}]
\item Suppose that in Figure \ref{fig:figure8} the lines do not criss-cross but instead go
straight across, as in a belt pulley system. Find the total length $L$ of the resulting shape.
\item Find the lengths of the two arcs cut off by a chord of length $3$ in a circle of radius $2$.
\item Find the perimeter of a \emph{regular dodecagon}\index{dodecagon} (i.e. a $12$-sided polygon
with sides of equal length) inscribed inside a circle of radius $\frac{1}{2}$. Compare it to the
circumference of the circle.\index{chord}
\end{enumerate}}
\newpage
%Begin Section 4.3
\section{Area of a Sector}
\piccaption[]{\label{fig:sector}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (1.2);
\filldraw [linecolor,fill=fillcolor,line width=1pt] (0,0) -- (70:1.2)
node[black,midway,above left] {$r$} arc (70:15:1.2) -- (0,0);
\fill (0,0) circle (2pt);
\node at (43:0.45) {$\theta$};
\draw [linecolor,dashed] (15:0.7) arc (15:70:0.7);
\end{tikzpicture}}
In geometry you learned that the area of a circle of radius $r$ is $\pi r^2$. We will now learn
how to find the area of a \textbf{sector}\index{sector}\index{area!sector} of a circle. A sector
is the region bounded by a central angle and its intercepted arc, such as the shaded region in
Figure \ref{fig:sector}.\index{circle!area}\index{area!circle}
Let $\theta$ be a central angle in a circle of radius $r$ and let $A$ be the area of its sector.
Similar to arc length, the ratio of $A$ to the area of the entire circle is the same as the ratio
of $\theta$ to one revolution. In other words, again using radian measure,
\begin{displaymath}
\frac{\text{area of sector}}{\text{area of entire circle}} ~=~
\frac{\text{sector angle}}{\text{one revolution}} \quad\Rightarrow\quad
\frac{A}{\pi\,r^2} ~=~ \frac{\theta}{2\pi} ~.
\end{displaymath}
Solving for $A$ in the above equation, we get the following formula:
\begin{center}\statecomment{In a circle of radius $r$, the area $A$ of the sector inside a central
angle $\theta$ is
\begin{equation}
A ~=~ \tfrac{1}{2}\,r^2 \;\theta ~,\label{eqn:sectorarea}
\end{equation}
where $\theta$ is measured in radians.
}\end{center}
\begin{exmp}
Find the area of a sector whose angle is $\frac{\pi}{5}$ rad in a circle of radius $4$
cm.\vspace{1mm}
\par\noindent\textbf{Solution:} Using $\theta=\frac{\pi}{5}$ and $r=4$ in formula
(\ref{eqn:sectorarea}), the area $A$ of the sector is
\begin{displaymath}
A ~=~ \tfrac{1}{2}\,r^2 \;\theta ~= \tfrac{1}{2}\,(4)^2 \;\cdot\;\tfrac{\pi}{5}
~=~ \boxed{\tfrac{8\pi}{5}~\text{cm}^2} ~.
\end{displaymath}
\end{exmp}
\begin{exmp}
Find the area of a sector whose angle is $117\Degrees$ in a circle of radius $3.5$ m.\vspace{1mm}
\par\noindent\textbf{Solution:} As with arc length, we have to make sure that the angle is measured
in radians or else the answer will be way off. So converting $\theta=117\Degrees$ to radians and
using $r=3.5$ in formula (\ref{eqn:sectorarea}) for the area $A$ of the sector, we get
\begin{displaymath}
\theta ~=~ 117\Degrees ~=~ \frac{\pi}{180} \;\cdot\; 117 ~=~ 2.042~\text{rad}
\quad\Rightarrow\quad
A ~=~ \tfrac{1}{2}\,r^2 \;\theta ~= \tfrac{1}{2}\,(3.5)^2 \;(2.042)
~=~ \boxed{12.51~\text{m}^2} ~.
\end{displaymath}
\end{exmp}
\divider
\vspace{1mm}
For a sector whose angle is $\theta$ in a circle of radius $r$, the length of the arc cut off by
that angle is $s=r\,\theta$. Thus, by formula (\ref{eqn:sectorarea}) the area $A$ of the sector
can be written as:\footnote{In some texts this formula is taken as a result from elementary geometry
and then used to prove formula (\ref{eqn:sectorarea}).}
\begin{equation}
\boxed{ A ~=~ \tfrac{1}{2}\,rs}\label{eqn:sectorarc}
\end{equation}
Note: The central angle $\theta$ that intercepts an arc is sometimes called the angle
\textbf{subtended}\index{subtended angle}\index{angle!subtended} by the arc.
\newpage
\begin{exmp}
Find the area of a sector whose arc is $6$ cm in a circle of radius $9$ cm.\vspace{1mm}
\par\noindent\textbf{Solution:} Using $s=6$ and $r=9$ in formula (\ref{eqn:sectorarc}) for the area
$A$, we get
\begin{displaymath}
A ~=~ \tfrac{1}{2}\,rs ~=~ ~=~ \tfrac{1}{2}\,(9)\,(6) ~=~ \boxed{27~\text{cm}^2} ~.
\end{displaymath}
Note that the angle subtended by the arc is $\theta = \frac{s}{r} = \frac{2}{3}$ rad.
\end{exmp}
\begin{exmp}\label{exmp:pulleyarea}
Find the area $K$ inside the belt pulley system from Example \ref{exmp:pulleys} in Section
4.2.\vspace{1mm}
\par\noindent\textbf{Solution:} Recall that the belt pulleys have radii of $5$ cm and $8$ cm, and
their centers are $15$ cm apart. We showed in Example \ref{exmp:pulleys} that $EF=AC=6\,\sqrt{6}$,
$\angle\,DAE=1.37$ rad, and $\angle\,GBF=1.77$ rad. We see from Figure \ref{fig:pulleyarea} that,
by symmetry, the total area $K$ enclosed by the belt is twice the area above the line
$\overline{DG}$, that is,
\begin{align*}
K ~=~ 2\,( (&\text{Area of sector $DAE$}) ~+~ (\text{Area of rectangle $AEFC$})\\
&+~ (\text{Area of triangle $\triangle\,ABC$}) ~+~ (\text{Area of sector $GBF$}) )~.
\end{align*}
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=0.8,every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (2.5);
\draw [line width=1pt] (7.5,0) circle (4);
\draw [dashed,-latex] ([shift={(7.5,0)}] 0:1.5) arc (0:101.54:1.5);
\node at (9.2,1.2) {$1.77$};
\draw [dashed] (0,0) -- ++(11.54:7.348) node[pos=0.7,above,sloped] {$6\,\sqrt{6}$};
\draw [dashed] (-2.5,0) -- (0,0) node [left,pos=0.0] {$D$};
\draw [dashed] (11.5,0) -- (7.5,0) node [right,pos=0.0] {$G$};
\draw [dashed] (101.54:2.5) -- (0,0) -- (7.5,0) -- ++(101.54:4) node[left,pos=0.22] {$3$}
node[right,pos=0.7] {$5$} node[above left,pos=0.375] {$C$} node[above,pos=1.0] {$F$};
\node [right] at (101.54:1.25) {$5$};
\node [below] at (0,0) {$A$};
\node [below] at (7.5,0) {$B$};
\node [above] at (101.54:2.5) {$E$};
\begin{scope}[>=latex]
\draw [dashed,|<->|] (0,-0.85) -- (7.5,-0.85) node[pos=0.4,fill=white] {$15$};
\end{scope}
\draw [linecolor,line width=1.5pt] (258.46:2.5) arc (258.46:101.54:2.5) --
([shift={(7.5,0)}] 101.54:4) node[black,sloped,above,midway] {$6\,\sqrt{6}$}
arc (101.54:-101.54:4) -- (258.46:2.5);
\draw [dashed,-latex] (180:0.7) arc (180:101.54:0.7);
\node at (145:1.2) {$1.37$};
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Belt pulleys with radii $5$ cm and $8$ cm}
\label{fig:pulleyarea}
\end{figure}
Since $AEFC$ is a rectangle with sides $5$ and $6\,\sqrt{6}$, its area is $30\,\sqrt{6}$. And since
$\triangle\,ABC$ is a right triangle whose legs have lengths $3$ and $6\,\sqrt{6}$, its area is
$\frac{1}{2}\,(3)\,(6\,\sqrt{6}) = 9\,\sqrt{6}$. Thus, using formula (\ref{eqn:sectorarea}) for the
areas of sectors $DAE$ and $GBF$, we have
\begin{align*}
K ~&=~ 2\,\left( (\text{Area of sector $DAE$}) \;+\; 30\,\sqrt{6} \;+\; 9\,\sqrt{6} \;+\;
(\text{Area of sector $GBF$}) \right)\\
&=~ 2\,\left( \tfrac{1}{2}\,(5)^2 \,(1.37) ~+~ 30\,\sqrt{6} ~+~ 9\,\sqrt{6} ~+~
\tfrac{1}{2}\,(8)^2 \,(1.77) \right)\\
&=~ \boxed{338.59~\text{cm}^2}~.
\end{align*}
\end{exmp}
\divider
\newpage
\piccaption[]{\label{fig:insector}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (1.5);
\filldraw [linecolor,fill=fillcolor,line width=1pt] (180:1.5) -- (60:1.5) node[black,midway,above]
{$a$} arc (60:-50:1.5) -- (180:1.5) node[black,midway,below] {$b$};
\draw [linecolor,dashed] (0,0) -- (60:1.5) node[black,midway,right] {$r$};
\draw [linecolor,dashed] (0,0) -- (-50:1.5);
\draw [linecolor,dashed] (0,0) -- (180:1.5);
\fill (0,0) circle (2pt);
\draw [line width=1pt] (170:1.5) arc (170:190:1.5);
\end{tikzpicture}}
So far we have dealt with the area cut off by a central angle. How would you find the area of a
region cut off by an inscribed angle, such as the shaded region in Figure \ref{fig:insector}? In
this picture, the center of the circle is inside the inscribed angle, and the lengths $a$ and $b$
of the two
chords are given, as is the radius $r$ of the circle. Drawing line segments from the center of the
circle to the endpoints of the chords indicates how to solve this problem: add up the areas of the
two triangles and the sector formed by the central angle. The areas and angles of the two triangles
can be determined (since all three sides are known) using methods from Chapter 2. Also, recall
(Theorem \ref{thm:centralangle} in Section 2.5) that a central angle has twice the measure of any
inscribed angle which intercepts the same arc. In the exercises you will be asked to solve problems
like this (including the cases where the center of the circle is outside or on the inscribed angle).
\piccaption[]{\label{fig:segment}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (1.5);
\draw [line width=1pt] (0,0) -- (70:1.5);
\draw [line width=1pt] (0,0) -- (5:1.5);
\filldraw [linecolor,fill=fillcolor,line width=1pt] (70:1.5) arc (70:5:1.5) -- (70:1.5);
\draw [line width=1pt] (0,0) -- (70:1.5) node[black,midway,above left] {$r$} arc (70:365:1.5)
-- (0,0) node[black,midway,below right] {$r$};
\fill (0,0) circle (2pt);
\node at (43:0.45) {$\theta$};
\node [below left] at (0,0) {$O$};
\node [above] at (70:1.5) {$A$};
\node [right] at (5:1.5) {$B$};
\draw [dashed] (5:0.7) arc (5:70:0.7);
\end{tikzpicture}}
Another type of region we can consider is a \textbf{segment}\index{segment}\index{circle!segment} of
a circle, which is the region between a chord and the arc it cuts off. In Figure \ref{fig:segment}
the segment formed by the chord $\overline{AB}$ is the shaded region between the arc
$\wideparen{AB}$ and the triangle $\triangle\,OAB$. By formula (\ref{eqn:areacase1a}) in Section
2.4 for the area of a triangle given two sides and their included angle, we know that
\begin{displaymath}
\text{area of } \triangle\,OAB ~=~ \tfrac{1}{2}\,(r)\,(r)\,\sin\;\theta ~=~
\tfrac{1}{2}\,r^2 \,\sin\;\theta ~.
\end{displaymath}
\picskip{1}
Thus, since the area $K$ of the segment is the area of the sector $AOB$ minus the area of the
triangle $\triangle\,OAB$, we have
\begin{equation}
\text{area $K$ of segment } AB ~=~ \tfrac{1}{2}\,r^2 \;\theta ~-~ \tfrac{1}{2}\,r^2 \,\sin\;\theta
~=~ \boxed{\tfrac{1}{2}\,r^2 \,(\theta - \sin\;\theta)} ~.\label{eqn:segment}
\end{equation}
Note that as a consequence of formula (\ref{eqn:segment}) we must have $\;\theta > \sin\;\theta$
for $0 < \theta \le \pi$ (measured in radians), since the area of a segment is positive for those
angles.
\begin{exmp}
\piccaption[]{\label{fig:exmpseg}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (1.5);
\draw [line width=1pt] (0,0) -- (102.18:1.5);
\draw [line width=1pt] (0,0) -- (5:1.5);
\filldraw [linecolor,fill=fillcolor,line width=1pt] (102.18:1.5) arc (102.18:5:1.5) --
(102.18:1.5) node[black,pos=0.51,left] {$3$};
\draw [line width=1pt] (0,0) -- (102.18:1.5) node[black,midway,left] {$2$} arc
(102.18:365:1.5) -- (0,0) node[black,midway,below right] {$2$};
\fill (0,0) circle (2pt);
\node at (54:0.3) {$\theta$};
\draw [dashed] (5:0.55) arc (5:102.18:0.55);
\end{tikzpicture}}
\noindent Find the area of the segment formed by a chord of length $3$ in a circle of radius $2$.\vspace{1mm}
\par\noindent\textbf{Solution:} Figure \ref{fig:exmpseg} shows the segment formed by a chord
of length $3$ in a circle of radius $r=2$. We can use the Law of Cosines to find
the subtended central angle $\theta$:
\begin{displaymath}
\cos\;\theta ~=~ \frac{2^2 + 2^2 - 3^2}{2\,(2)\,(2)} ~=~ -0.125 \quad\Rightarrow\quad
\theta ~=~ 1.696~\text{rad}
\end{displaymath}
Thus, by formula (\ref{eqn:segment}) the area $K$ of the segment is:
\begin{displaymath}
K ~=~ \tfrac{1}{2}\,r^2 \,(\theta - \sin\;\theta) ~=~ \tfrac{1}{2}\,(2)^2 \,
(1.696 - \sin\;1.696) ~=~ \boxed{1.408}
\end{displaymath}
\end{exmp}
\divider
\newpage
\begin{exmp}
The centers of two circles are $7$ cm apart, with one circle having a radius of $5$ cm and the
other a radius of $3$ cm. Find the area $K$ of their intersection.\vspace{1mm}
\par\noindent\textbf{Solution:} In Figure \ref{fig:circintersect}(a), we see that the intersection
of the two circles is the union of the segments formed by the chord $\overline{CD}$ in each circle.
Thus, once we determine the angles $\angle\,CAD$ and $\angle\,CBD$ we can calculate the area of
each segment and add those areas together to get $K$.\vspace{-1mm}
\begin{figure}[h]
\centering
\subfloat[][ $\angle\,BAC = \frac{1}{2}\,\angle\,CAD$, $\angle\,ABC = \frac{1}{2}\,\angle\,CBD$]{
\begin{tikzpicture}[every node/.style={font=\small}]
\begin{scope}
\draw [clip] (0,0) circle (2.5);
\fill [fillcolor] (3.5,0) circle (2);
\end{scope}
\draw [line width=1pt,name path=c5] (0,0) circle (2.5);
\draw [line width=1pt,name path=c4] (3.5,0) circle (2);
\node [name intersections={of=c5 and c4},above] at (intersection-1) {$C$};
\node [below] at (intersection-2) {$D$};
\draw [dashed] (0,0) -- (intersection-1) node[above,midway] {$5$} -- (3.5,0)
node[above,midway] {$4$} -- (intersection-2) -- (0,0);
\draw [dashed] (intersection-1) -- (intersection-2);
\draw [dashed] (0,0) -- (3.5,0);
\fill (0,0) circle (2pt);
\node [left] at (0,0) {$A$};
\node [right] at (3.5,0) {$B$};
\node [below] at (1.2,0) {$7$};
\fill (3.5,0) circle (2pt);
\end{tikzpicture}}
\quad
\subfloat[][ Triangle $\triangle\,ABC$]{
\begin{tikzpicture}[scale=0.6,every node/.style={font=\small}]
\draw [line width=1pt] (0,0) -- ++(34.05:5) node[midway,above left] {$5$} -- (7,0)
node[pos=0.0,above] {$C$} node[midway,above right] {$4$} -- cycle;
\node [below] at (3.5,0) {$7$};
\node [left] at (0,0) {$A$};
\node [right] at (7,0) {$B$};
\node at (1,0.3) {$\alpha$};
\node at (6.0,0.3) {$\beta$};
\end{tikzpicture}}\vspace{-2mm}
\caption[]{}
\label{fig:circintersect}
\end{figure}\vspace{-1mm}
By symmetry, we see that $\angle\,BAC = \frac{1}{2}\,\angle\,CAD$ and
$\angle\,ABC = \frac{1}{2}\,\angle\,CBD$. So let $\alpha = \angle\,BAC$ and $\beta = \angle\,ABC$,
as in Figure \ref{fig:circintersect}(b). By the Law of Cosines, we have
\begin{alignat*}{7}
\cos\;\alpha ~&=~ \frac{7^2 + 5^2 - 4^2}{2\,(7)\,(5)} ~&=~ 0.8286 \quad&\Rightarrow\quad
\alpha ~&=~ 0.594~\text{rad} \quad&\Rightarrow\quad \angle\,CAD ~&=~2\,(0.594) = 1.188~\text{rad}\\
\cos\;\beta ~&=~ \frac{7^2 + 4^2 - 5^2}{2\,(7)\,(4)} ~&=~ 0.7143 \quad&\Rightarrow\quad
\beta ~&=~ 0.775~\text{rad} \quad&\Rightarrow\quad \angle\,CBD ~&=~ 2\,(0.775) = 1.550~\text{rad}
\end{alignat*}
Thus, the area $K$ is
\begin{align*}
K ~&=~ (\text{Area of segment $CD$ in circle at $A$}) ~+~
(\text{Area of segment $CD$ in circle at $B$})\\
&=~ \tfrac{1}{2}\,(5)^2 \,(1.188 - \sin\;1.188) ~+~ \tfrac{1}{2}\,(4)^2 \,(1.550 - \sin\;1.550)\\
&=~ \boxed{7.656~\text{cm}^2} ~.
\end{align*}
\end{exmp}\vspace{-4mm}
\divider
\vspace{2mm}
\startexercises\label{sec4dot3}
\vspace{4mm}
{\small
\par\noindent For Exercises 1-3, find the area of the sector for the given angle $\theta$ and
radius $r$.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{3}
\item $\theta = 2.1$ rad, $r = 1.2$ cm
\item $\theta = \frac{3\pi}{7}$ rad, $r = 3.5$ ft
\item $\theta = 78\Degrees$, $r = 6$ m
\end{multicols}
\item The centers of two belt pulleys, with radii of $3$ cm and $6$ cm, respectively, are $13$ cm
apart. Find the total area $K$ enclosed by the belt.
\item In Exercise 4 suppose that both belt pulleys have the same radius of $6$ cm.
Find the total area $K$ enclosed by the belt.
\item Find the area enclosed by the figure eight in Exercise \ref{exer:figure8len} from
Section 4.2.
\suspend{enumerate}
%%\newpage
\par\noindent For Exercises \ref{exer:secstart}-\ref{exer:secend}, find the area of the sector for
the given radius $r$ and arc length $s$.
\resume{enumerate}[{[\bfseries 1.]}]
\begin{multicols}{3}
\item\label{exer:secstart} $r = 5$ cm, $s = 2$ cm
\item $r = a$, $s = a$
\item\label{exer:secend} $r = 1$ cm, $s = \pi$ cm
\end{multicols}
\suspend{enumerate}
\par\noindent For Exercises \ref{exer:segstart}-\ref{exer:segend}, find the area of the segment
formed by a chord of length $a$ in a circle of radius $r$.
\resume{enumerate}[{[\bfseries 1.]}]
\begin{multicols}{3}
\item\label{exer:segstart} $a = 4$ cm, $r = 4$ cm
\item $a = 1$ cm, $r = 5$ cm
\item\label{exer:segend} $a = 2$ cm, $r = 5$ cm
\end{multicols}
\item\label{exer:insareain} Find the area of the shaded region in Figure \ref{fig:exerinsareain}.
\begin{figure}[h]
\begin{minipage}[b]{5cm}
\begin{center}
\begin{tikzpicture}[every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (1.5);
\filldraw [linecolor,fill=fillcolor,line width=1pt] (180:1.5) -- (80:1.5)
node[black,midway,above] {$4$} arc (80:-65:1.5) -- (180:1.5) node[black,midway,below] {$5$};
\draw [linecolor,dashed] (0,0) -- (80:1.5) node[black,midway,right] {$3$};
\fill (0,0) circle (2pt);
\draw [line width=1pt] (170:1.5) arc (170:190:1.5);
\end{tikzpicture}\vspace{-5mm}
\end{center}
\caption[]{\enskip Exercise \ref{exer:insareain}}
\label{fig:exerinsareain}
\end{minipage}
\begin{minipage}[b]{5cm}
\begin{center}
\begin{tikzpicture}[every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (1.5);
\filldraw [linecolor,fill=fillcolor,line width=1pt] (150:1.5) -- (70:1.5)
node[black,pos=0.85,below] {$7$} arc (70:20:1.5) -- (150:1.5) node[black,pos=0.3,below] {$9$};
\draw [linecolor,dashed] (0,0) -- (150:1.5) node[black,midway,below] {$5$};
\fill (0,0) circle (2pt);
\draw [line width=1pt] (140:1.5) arc (140:160:1.5);
\end{tikzpicture}\vspace{-5mm}
\end{center}
\caption[]{\enskip Exercise \ref{exer:insareaout}}
\label{fig:exerinsareaout}
\end{minipage}
\begin{minipage}[b]{5cm}
\begin{center}
\begin{tikzpicture}[every node/.style={font=\small}]
\draw [line width=1pt] (0,0) circle (1.5);
\filldraw [linecolor,fill=fillcolor,line width=1pt] (180:1.5) -- (65:1.5)
node[black,midway,above] {$8$} arc (65:0:1.5) -- (180:1.5) node[black,pos=0.25,below] {$6$}
node[black,pos=0.75,below] {$6$};
\fill (0,0) circle (2pt);
\draw [line width=1pt] (170:1.5) arc (170:190:1.5);
\end{tikzpicture}\vspace{-5mm}
\end{center}
\caption[]{\enskip Exercise \ref{exer:insareaon}}
\label{fig:exerinsareaon}
\end{minipage}