-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrigbook-chapter5.tex
2185 lines (2088 loc) · 107 KB
/
trigbook-chapter5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Graphing and Inverse Functions}
%Begin Section 5.1
The trigonometric functions can be graphed just like any other function, as we will now show.
In the graphs we will always use radians for the angle measure.\index{graphs}\index{trigonometric
functions!graphs of}
\section{Graphing the Trigonometric Functions}
\piccaption[]{\label{fig:unitcircle}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small}]
\draw[black!60,line width=0.3pt,-latex] (-2,0) -- (2,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.8) -- (0,2) node[above] {$y$};
\draw [line width=1pt] (60:1.5) arc (60:360:1.5);
\node [right] at (35:1.5) {$s=r\,\theta=\theta$};
\draw [dashed] (0,0) -- (60:1.5) node[black,midway,above] {$1$};
\draw [-latex,dashed] (0:0.6) arc (0:60:0.6);
\draw [linecolor,-latex,line width=1.5pt] (0:1.5) arc (0:59:1.5);
\fill (0:1.5) circle (2pt);
\fill (60:1.5) circle (2pt);
\node at (35:0.4) {$\theta$};
\node [below right] at (0:1.5) {$1$};
\node [below left] at (0:0) {$0$};
\node [above right] at (60:1.5) {$(x,y)=(\cos\;\theta,\sin\;\theta)$};
\node [right] at (-2,1.8) {$x^2 + y^2 = 1$};
\end{tikzpicture}}
The first function we will graph is the sine function. We will describe a geometrical way to
create the graph, using the \emph{unit circle}.\index{unit circle}\index{circle!unit} This is the
circle of radius $1$ in the $xy$-plane consisting of all points $(x,y)$ which satisfy the equation
$x^2 + y^2 = 1$.
We see in Figure \ref{fig:unitcircle} that any point on the unit circle has coordinates
$(x,y)=(\cos\;\theta,\sin\;\theta)$, where $\theta$ is the angle that the line segment from the
origin to $(x,y)$ makes with the positive $x$-axis (by definition of sine and cosine).
So as the point $(x,y)$ goes around the circle, its $y$-coordinate is $\sin\;\theta$.
We thus get a correspondence between the $y$-coordinates of points on the unit circle and the
values $f(\theta)=\sin\;\theta$, as shown by the horizontal lines from the unit circle to the graph
of $f(\theta)=\sin\;\theta$ in Figure \ref{fig:sinecircle} for the angles $\theta = 0$,
$\tfrac{\pi}{6}$, $\tfrac{\pi}{3}$, $\tfrac{\pi}{2}$.
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=12cm/360]
\draw[black!60,line width=0.3pt,-latex] (-5,0) -- (200,0) node[right] {$\theta$};
\draw[black!60,line width=0.3pt,-latex] (0,-0.5) -- (0,2.4) node[above] {$f(\theta)$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,180}{\pgfpointxy{\x}{2*sin(\x)}}
\pgfusepath{stroke}
\node[black,below left] at (0,0) {$0$};
\foreach \pos in {30,60,90,120,150,180}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {2}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$1$};
\node[black,below] at (30,-0.1) {$\tfrac{\pi}{6}$};
\node[black,below] at (60,-0.1) {$\tfrac{\pi}{3}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (120,-0.1) {$\tfrac{2\pi}{3}$};
\node[black,below] at (150,-0.1) {$\tfrac{5\pi}{6}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,above] at (180,1) {$f(\theta)=\sin\;\theta$};
\end{scope}
\draw[black!60,line width=0.3pt] (-2.2,0) -- (0,0);
\draw[black,-latex] (0:0.8) arc (0:30:0.8);
\draw[red,line width=0.3pt] (0,0) -- ++(30:2) node[black,pos=0.7,fill=white] {$\tfrac{\pi}{6}$}
-- ++(2.268,0) -- ++(0,-1);
\draw[green!60!black,line width=0.3pt] (0,0) -- ++(60:2) node[black,pos=0.7,fill=white]
{$\tfrac{\pi}{3}$} -- ++(4,0) -- ++(0,-1.732);
\draw[yellow!60!black,line width=0.3pt] (0,0) -- ++(90:2) node[black,pos=0.7,fill=white]
{$\tfrac{\pi}{2}$} -- ++(6,0) -- ++(0,-2);
\draw[cyan!80!black,line width=0.3pt] (0,0) -- (3,0) node[black,pos=0.46,fill=white] {$0$};
\draw [black,line width=1pt] (0:2) arc (0:180:2);
\node [black,below] at (2,0) {$1$};
\node [black,above left] at (0,2) {$1$};
\node [black,below] at (0,-0.2) {$x^2 + y^2 = 1$};
\node [black] at (15:0.6) {$\theta$};
\fill (0,0) circle (2pt);
\end{tikzpicture}\vspace{-4mm}
\end{center}
\caption[]{\quad Graph of sine function based on $y$-coordinate of points on unit circle}
\label{fig:sinecircle}
\end{figure}
We can extend the above picture to include angles from $0$ to $2\pi$ radians, as in Figure
\ref{fig:sinefullcircle}. This illustrates what is sometimes called the \emph{unit circle
definition of the sine function}.\index{sine!unit circle definition of}
\newpage
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\draw[black!60,line width=0.3pt,-latex] (-5,0) -- (380,0) node[right] {$\theta$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,1.3) node[above] {$f(\theta)$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{sin(\x)}}
\pgfusepath{stroke}
\node[black,below left] at (0,0) {$0$};
\foreach \pos in {30,60,90,120,150,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (30,-0.1) {$\tfrac{\pi}{6}$};
\node[black,below] at (60,-0.1) {$\tfrac{\pi}{3}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (120,-0.1) {$\tfrac{2\pi}{3}$};
\node[black,below] at (150,-0.1) {$\tfrac{5\pi}{6}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,above] at (180,1) {$f(\theta)=\sin\;\theta$};
\end{scope}
\draw[black!60,line width=0.3pt,-latex] (-1.5,0) -- (1.5,0) node[below right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1) -- (0,1.3) node[above] {$y$};
\draw[black,-latex] (0:0.8) arc (0:30:0.8);
\draw[red,line width=0.3pt] (0,0) -- ++(30:1);
\draw[red,line width=0.3pt] (0,0) -- ++(150:1) -- ++(4.366,0) -- ++(0,-0.5);
\draw[red,line width=0.3pt] (3.5,0.5) -- (5.5,0.5) -- (5.5,0);
\draw[green!60!black,line width=0.3pt] (0,0) -- ++(60:1);
\draw[green!60!black,line width=0.3pt] (0,0) -- ++(120:1) -- ++(4.5,0) -- ++(0,-0.866);
\draw[green!60!black,line width=0.3pt] (4,0.866) -- (5,0.866) -- (5,0);
\draw[yellow!60!black,line width=0.3pt] (0,0) -- ++(90:1) -- ++(4.5,0) -- ++(0,-1);
\draw[cyan!80!black,line width=0.3pt] (0,0) -- (3,0);
\draw[blue,line width=0.3pt] (0,0) -- (225:1) -- ++(7.457,0) -- ++(0,0.707);
\draw[blue,line width=0.3pt] (0,0) -- (315:1) -- ++(7.543,0) -- ++(0,0.707);
\draw [black,line width=1pt] (0,0) circle (1);
\node [black,below right] at (1,0) {$1$};
\node [black,below] at (0,-1) {$x^2 + y^2 = 1$};
\node [black] at (15:0.6) {$\theta$};
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Unit circle definition of the sine function}
\label{fig:sinefullcircle}
\end{figure}
Since the trigonometric functions repeat every $2\pi$ radians ($360\Degrees$), we get, for example,
the following graph of the function $y=\sin\;x$ for $x$ in the interval $\ival{-2\pi}{2\pi}$:
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.1,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\draw[black!60,line width=0.3pt,dotted] (-360,-1) grid[xstep=45,ystep=1] (360,1);
\draw[black!60,line width=0.3pt,-latex] (-380,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,1.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{-360,-355,...,360}{\pgfpointxy{\x}{sin(\x)}}
\pgfusepath{stroke}
\node[black,below right] at (0,0) {$0$};
\foreach \pos in {-360,-315,-270,-225,-180,-135,-90,-45,45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,below] at (-45,-0.1) {$-\tfrac{\pi}{4}$};
\node[black,below] at (-90,-0.1) {$-\tfrac{\pi}{2}$};
\node[black,below] at (-135,-0.1) {$-\tfrac{3\pi}{4}$};
\node[black,below] at (-180,-0.1) {$-\pi$};
\node[black,below] at (-225,-0.1) {$-\tfrac{5\pi}{4}$};
\node[black,below] at (-270,-0.1) {$-\tfrac{3\pi}{2}$};
\node[black,below] at (-315,-0.1) {$-\tfrac{7\pi}{4}$};
\node[black,below] at (-360,-0.1) {$-2\pi$};
\node[black,above] at (180,1) {$y=\sin\;x$};
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\sin\;x$}
\label{fig:sinegraph}
\end{figure}
To graph the cosine function, we could again use the unit circle idea (using the $x$-coordinate of
a point that moves around the circle), but there is an easier way. Recall from Section 1.5 that
$\cos\;x = \sin\;(x+90\Degrees)$ for all $x$. So $\cos\;0\Degrees$ has the same value as
$\sin\;90\Degrees$, $\cos\;90\Degrees$ has the same value as $\sin\;180\Degrees$,
$\cos\;180\Degrees$ has the same value as $\sin\;270\Degrees$,
and so on. In other words, the graph of the cosine function is just the
graph of the sine function shifted to the \emph{left} by $90\Degrees = \pi/2$ radians,
as in Figure \ref{fig:cosinegraph}:\index{sine!graph of}\index{cosine!graph of}
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.1,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\draw[black!60,line width=0.3pt,dotted] (-360,-1) grid[xstep=45,ystep=1] (360,1);
\draw[black!60,line width=0.3pt,-latex] (-380,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,1.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{-360,-355,...,360}{\pgfpointxy{\x}{cos(\x)}}
\pgfusepath{stroke}
\node[black,below left] at (0,0) {$0$};
\foreach \pos in {-360,-315,-270,-225,-180,-135,-90,-45,45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,below] at (-45,-0.1) {$-\tfrac{\pi}{4}$};
\node[black,below] at (-90,-0.1) {$-\tfrac{\pi}{2}$};
\node[black,below] at (-135,-0.1) {$-\tfrac{3\pi}{4}$};
\node[black,below] at (-180,-0.1) {$-\pi$};
\node[black,below] at (-225,-0.1) {$-\tfrac{5\pi}{4}$};
\node[black,below] at (-270,-0.1) {$-\tfrac{3\pi}{2}$};
\node[black,below] at (-315,-0.1) {$-\tfrac{7\pi}{4}$};
\node[black,below] at (-360,-0.1) {$-2\pi$};
\node[black,above] at (180,1) {$y=\cos\;x$};
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\cos\;x$}
\label{fig:cosinegraph}
\end{figure}
To graph the tangent function, use $\tan\;x = \frac{\sin\;x}{\cos\;x}$ to get the following graph:
\newpage
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.1,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360,y=4cm/10]
\draw[black!60,line width=0.3pt,dotted] (-360,-10) grid[xstep=45,ystep=2] (360,10);
\draw[black!60,line width=0.3pt,-latex] (-380,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-10) -- (0,10) node[above] {$y$};
\draw[linecolor,line width=0.5pt,dashed] (90,-10) -- (90,10);
\draw[linecolor,line width=0.5pt,dashed] (270,-10) -- (270,10);
\draw[linecolor,line width=0.5pt,dashed] (-90,-10) -- (-90,10);
\draw[linecolor,line width=0.5pt,dashed] (-270,-10) -- (-270,10);
\pgfplothandlerlineto
\pgfplotfunction{\x}{-360,-356,...,-276}{\pgfpointxy{\x}{tan(\x)}}
\pgfplotfunction{\x}{-264,-260,...,-96}{\pgfpointxy{\x}{tan(\x)}}
\pgfplotfunction{\x}{-84,-80,...,84}{\pgfpointxy{\x}{tan(\x)}}
\pgfplotfunction{\x}{96,100,...,264}{\pgfpointxy{\x}{tan(\x)}}
\pgfplotfunction{\x}{276,280,...,360}{\pgfpointxy{\x}{tan(\x)}}
\pgfusepath{stroke}
\node[black,below right] at (0,0) {$0$};
\foreach \pos in {-360,-315,-270,-225,-180,-135,-90,-45,45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-8,-6,-4,-2,2,4,6,8}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,below] at (-45,-0.1) {$-\tfrac{\pi}{4}$};
\node[black,below] at (-90,-0.1) {$-\tfrac{\pi}{2}$};
\node[black,below] at (-135,-0.1) {$-\tfrac{3\pi}{4}$};
\node[black,below] at (-180,-0.1) {$-\pi$};
\node[black,below] at (-225,-0.1) {$-\tfrac{5\pi}{4}$};
\node[black,below] at (-270,-0.1) {$-\tfrac{3\pi}{2}$};
\node[black,below] at (-315,-0.1) {$-\tfrac{7\pi}{4}$};
\node[black,below] at (-360,-0.1) {$-2\pi$};
\node[black,above] at (180,1) {$y=\tan\;x$};
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\tan\;x$}
\label{fig:tangentgraph}
\end{figure}
Recall that the tangent is positive for angles in QI and QIII, and is negative in QII and QIV, and
that is indeed what the graph in Figure \ref{fig:tangentgraph} shows. We know that $\tan\;x$ is
not defined when $\cos\;x = 0$, i.e. at odd multiples of $\frac{\pi}{2}$: $x=\pm\,\frac{\pi}{2}$,
$\pm\,\frac{3\pi}{2}$, $\pm\,\frac{5\pi}{2}$, etc. We can figure out what happens \emph{near} those
angles by looking at the sine and cosine functions. For example, for $x$ in QI near $\frac{\pi}{2}$,
$\sin\;x$ and $\cos\;x$ are both positive, with $\sin\;x$ very close to $1$ and $\cos\;x$ very close
to $0$, so the quotient $\tan\;x = \frac{\sin\;x}{\cos\;x}$ is a positive number that is very large.
And the closer $x$ gets to $\frac{\pi}{2}$, the larger $\tan\;x$ gets. Thus, $x=\frac{\pi}{2}$ is a
\emph{vertical asymptote}\index{vertical asymptote}\index{asymptote!vertical} of the graph of
$y=\tan\;x$.\index{tangent!graph of}\index{asymptote}
Likewise, for $x$ in QII very close to $\frac{\pi}{2}$, $\sin\;x$ is very close to $1$ and $\cos\;x$
is negative and very close to $0$, so the quotient $\tan\;x = \frac{\sin\;x}{\cos\;x}$ is a negative
number that is very large, and it gets larger in the negative direction the closer $x$ gets to
$\frac{\pi}{2}$. The graph shows this. Similarly, we get vertical asymptotes at $x=-\frac{\pi}{2}$,
$x=\frac{3\pi}{2}$, and $x=-\frac{3\pi}{2}$, as in Figure \ref{fig:tangentgraph}. Notice that
the graph of the tangent function repeats every $\pi$ radians, i.e. two times faster than the
graphs of sine and cosine repeat.
The graphs of the remaining trigonometric functions can be determined by looking at the graphs of
their reciprocal functions. For example, using $\csc\;x = \frac{1}{\sin\;x}$ we can just look at
the graph of $y=\sin\;x$ and invert the values. We will get vertical asymptotes when $\sin\;x=0$,
namely at multiples of $\pi$: $x=0$, $\pm\,\pi$, $\pm\,2\pi$, etc. Figure \ref{fig:cosecantgraph}
shows the graph of $y=\csc\;x$, with the graph of $y=\sin\;x$ (the dashed curve) for reference.
\newpage
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.1,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},dashed,x=6cm/360,y=3cm/4]
\draw[black!60,line width=0.3pt,dotted] (-360,-4) grid[xstep=45,ystep=1] (360,4);
\draw[black!60,solid,line width=0.3pt,-latex] (-380,0) -- (380,0) node[right] {$x$};
\draw[black!60,solid,line width=0.3pt,-latex] (0,-4.2) -- (0,4.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{-360,-355,...,360}{\pgfpointxy{\x}{sin(\x)}}
\pgfusepath{stroke}
\node[black,below right] at (0,0) {$0$};
\foreach \pos in {-360,-315,-270,-225,-180,-135,-90,-45,45,90,135,180,225,270,315,360}
\draw[black!60,solid,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-4,-3,-2,-1,1,2,3,4}
\draw[black!60,solid,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt)
node[black,left] {$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,below] at (-45,-0.1) {$-\tfrac{\pi}{4}$};
\node[black,below] at (-90,-0.1) {$-\tfrac{\pi}{2}$};
\node[black,below] at (-135,-0.1) {$-\tfrac{3\pi}{4}$};
\node[black,below] at (-180,-0.1) {$-\pi$};
\node[black,below] at (-225,-0.1) {$-\tfrac{5\pi}{4}$};
\node[black,below] at (-270,-0.1) {$-\tfrac{3\pi}{2}$};
\node[black,below] at (-315,-0.1) {$-\tfrac{7\pi}{4}$};
\node[black,below] at (-360,-0.1) {$-2\pi$};
\node[black,above] at (90,3) {$y=\csc\;x$};
\end{scope}
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360,y=3cm/4]
\draw[line width=0.5pt,dashed] (360,-4) -- (360,4);
\draw[line width=0.5pt,dashed] (180,-4) -- (180,4);
\draw[line width=0.5pt,dashed] (-360,-4) -- (-360,4);
\draw[line width=0.5pt,dashed] (-180,-4) -- (-180,4);
\pgfplothandlerlineto
\pgfplotfunction{\x}{-345,-340,...,-195}{\pgfpointxy{\x}{1/sin(\x)}}
\pgfplotfunction{\x}{-165,-160,...,-15}{\pgfpointxy{\x}{1/sin(\x)}}
\pgfplotfunction{\x}{15,20,...,165}{\pgfpointxy{\x}{1/sin(\x)}}
\pgfplotfunction{\x}{195,200,...,345}{\pgfpointxy{\x}{1/sin(\x)}}
\pgfusepath{stroke}
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\csc\;x$}
\label{fig:cosecantgraph}
\end{figure}
Likewise, Figure \ref{fig:secantgraph} shows the graph of $y=\sec\;x$, with the graph of
$y=\cos\;x$ (the dashed curve) for reference. Note the vertical asymptotes at\index{secant!graph of}
$x=\pm\,\frac{\pi}{2}$, $\pm\,\frac{3\pi}{2}$. Notice also that the graph is just the graph of
the cosecant function shifted to the left by $\frac{\pi}{2}$ radians.\index{cosecant!graph of}
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}[scale=1.1,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},dashed,x=6cm/360,y=3cm/4]
\draw[black!60,line width=0.3pt,dotted] (-360,-4) grid[xstep=45,ystep=1] (360,4);
\draw[black!60,solid,line width=0.3pt,-latex] (-380,0) -- (380,0) node[right] {$x$};
\draw[black!60,solid,line width=0.3pt,-latex] (0,-4.2) -- (0,4.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{-360,-355,...,360}{\pgfpointxy{\x}{cos(\x)}}
\pgfusepath{stroke}
\node[black,below right] at (0,0) {$0$};
\foreach \pos in {-360,-315,-270,-225,-180,-135,-90,-45,45,90,135,180,225,270,315,360}
\draw[black!60,solid,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-4,-3,-2,-1,1,2,3,4}
\draw[black!60,solid,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt)
node[black,left] {$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,below] at (-45,-0.1) {$-\tfrac{\pi}{4}$};
\node[black,below] at (-90,-0.1) {$-\tfrac{\pi}{2}$};
\node[black,below] at (-135,-0.1) {$-\tfrac{3\pi}{4}$};
\node[black,below] at (-180,-0.1) {$-\pi$};
\node[black,below] at (-225,-0.1) {$-\tfrac{5\pi}{4}$};
\node[black,below] at (-270,-0.1) {$-\tfrac{3\pi}{2}$};
\node[black,below] at (-315,-0.1) {$-\tfrac{7\pi}{4}$};
\node[black,below] at (-360,-0.1) {$-2\pi$};
\node[black,above] at (180,3) {$y=\sec\;x$};
\end{scope}
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360,y=3cm/4]
\draw[line width=0.5pt,dashed] (270,-4) -- (270,4);
\draw[line width=0.5pt,dashed] (90,-4) -- (90,4);
\draw[line width=0.5pt,dashed] (-270,-4) -- (-270,4);
\draw[line width=0.5pt,dashed] (-90,-4) -- (-90,4);
\pgfplothandlerlineto
\pgfplotfunction{\x}{-360,-355,...,-285}{\pgfpointxy{\x}{1/cos(\x)}}
\pgfplotfunction{\x}{-255,-250,...,-105}{\pgfpointxy{\x}{1/cos(\x)}}
\pgfplotfunction{\x}{-75,-70,...,75}{\pgfpointxy{\x}{1/cos(\x)}}
\pgfplotfunction{\x}{105,110,...,255}{\pgfpointxy{\x}{1/cos(\x)}}
\pgfplotfunction{\x}{285,290,...,360}{\pgfpointxy{\x}{1/cos(\x)}}
\pgfusepath{stroke}
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\sec\;x$}
\label{fig:secantgraph}
\end{figure}
\newpage
The graph of $y=\cot\;x$ can also be determined by using $\cot\;x = \frac{1}{\cot\;x}$.
Alternatively, we can\index{cotangent!graph of}
use the relation $\cot\;x = -\tan\;(x+90\Degrees)$ from Section 1.5, so that the graph of the
cotangent function is just the graph of the tangent function shifted to the left by $\frac{\pi}{2}$
radians and then reflected about the $x$-axis, as in Figure \ref{fig:cotangentgraph}:
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.1,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360,y=4cm/10]
\draw[black!60,line width=0.3pt,dotted] (-360,-10) grid[xstep=45,ystep=2] (360,10);
\draw[black!60,line width=0.3pt,-latex] (-380,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-10) -- (0,10) node[above] {$y$};
\draw[linecolor,line width=0.5pt,dashed] (180,-10) -- (180,10);
\draw[linecolor,line width=0.5pt,dashed] (360,-10) -- (360,10);
\draw[linecolor,line width=0.5pt,dashed] (-180,-10) -- (-180,10);
\draw[linecolor,line width=0.5pt,dashed] (-360,-10) -- (-360,10);
\pgfplothandlerlineto
\pgfplotfunction{\x}{-354,-348,...,-186}{\pgfpointxy{\x}{-tan(90+\x)}}
\pgfplotfunction{\x}{-174,-168,...,-6}{\pgfpointxy{\x}{-tan(90+\x)}}
\pgfplotfunction{\x}{6,12,...,174}{\pgfpointxy{\x}{-tan(90+\x)}}
\pgfplotfunction{\x}{186,192,...,354}{\pgfpointxy{\x}{-tan(90+\x)}}
\pgfusepath{stroke}
\node[black,below right] at (0,0) {$0$};
\foreach \pos in {-360,-315,-270,-225,-180,-135,-90,-45,45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-8,-6,-4,-2,2,4,6,8}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,below] at (-45,-0.1) {$-\tfrac{\pi}{4}$};
\node[black,below] at (-90,-0.1) {$-\tfrac{\pi}{2}$};
\node[black,below] at (-135,-0.1) {$-\tfrac{3\pi}{4}$};
\node[black,below] at (-180,-0.1) {$-\pi$};
\node[black,below] at (-225,-0.1) {$-\tfrac{5\pi}{4}$};
\node[black,below] at (-270,-0.1) {$-\tfrac{3\pi}{2}$};
\node[black,below] at (-315,-0.1) {$-\tfrac{7\pi}{4}$};
\node[black,below] at (-360,-0.1) {$-2\pi$};
\node[black,above] at (90,1) {$y=\cot\;x$};
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\cot\;x$}
\label{fig:cotangentgraph}
\end{figure}
\begin{exmp}
Draw the graph of $y=-\sin\;x$ for $0 \le x \le 2\pi$.\vspace{1mm}
\par\noindent\textbf{Solution:} Multiplying a function by $-1$ just reflects its graph around the
$x$-axis. So reflecting the graph of $y=\sin\;x$ around the $x$-axis gives us the graph of
$y=-\sin\;x$:
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\draw[black!60,line width=0.3pt,dotted] (0,-1) grid[xstep=45,ystep=1] (360,1);
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,1.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{-sin(\x)}}
\pgfusepath{stroke}
\node[black,left] at (0,0) {$0$};
\foreach \pos in {45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,above] at (180,1) {$y=-\sin\;x$};
\end{scope}
\end{tikzpicture}
\end{center}
\noindent Note that this graph is the same as the graphs of $y=\sin\;(x \pm \pi)$ and
$y=\cos\;(x+\frac{\pi}{2})$.
\end{exmp}
\divider
\newpage
It is worthwhile to remember the general shapes of the graphs of the six trigonometric functions,
especially for sine, cosine, and tangent. In particular, the graphs of the sine and cosine functions
are called \emph{sinusoidal}\index{sinusoidal curves} curves. Many phenomena in nature exhibit
sinusoidal behavior, so recognizing the general shape is important.
\begin{exmp}
Draw the graph of $y=1+\cos\;x$ for $0 \le x \le 2\pi$.\vspace{1mm}
\par\noindent\textbf{Solution:} Adding a constant to a function just moves its graph up or down by
that amount, depending on whether the constant is positive or negative, respectively. So adding
$1$ to $\cos\;x$ moves the graph of $y=\cos\;x$ upward by $1$, giving us the graph of
$y=1+\cos\;x$:
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\draw[black!60,line width=0.3pt,dotted] (0,0) grid[xstep=45,ystep=1] (360,2);
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (0,2.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{1+cos(\x)}}
\pgfusepath{stroke}
\node[black,below left] at (0,0) {$0$};
\foreach \pos in {45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {1,2}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,above] at (180,1) {$y=1+\cos\;x$};
\end{scope}
\end{tikzpicture}
\end{center}
\end{exmp}\vspace{-4mm}
\divider
\vspace{2mm}
\startexercises\label{sec5dot1}
\vspace{4mm}
{\small
\par\noindent For Exercises 1-12, draw the graph of the given function for $0 \le x \le 2\pi$.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{4}
\item $y=-\cos\;x$
\item $y=1+\sin\;x$
\item $y=2-\cos\;x$
\item $y=2-\sin\;x$
\end{multicols}
\begin{multicols}{4}
\item $y=-\tan\;x$
\item $y=-\cot\;x$
\item $y=1+\sec\;x$
\item $y=-1-\csc\;x$
\end{multicols}
\begin{multicols}{4}
\item $y=2\sin\;x$
\item $y=-3\cos\;x$
\item $y=-2\tan\;x$
\item $y=-2\sec\;x$
\end{multicols}
\piccaption[]{\label{fig:linedef}}\parpic[r]{\begin{tikzpicture}[every node/.style={font=\small},
scale=0.8]
\draw[black!60,line width=0.3pt,-latex] (-2.2,0) -- (2.8,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-2.2) -- (0,2.8) node[above] {$y$};
\draw [linecolor,line width=1.5pt] (0,0) circle (2);
\draw [line width=1pt] (0,0) -- (2,3.464) -- (2,0);
\draw [line width=1pt] (60:2) -- (1,0);
\draw [line width=1pt] (0,2) -- (1.155,2);
\fill (0,0) circle (2pt);
\node [below left] at (0,0) {$O$};
\node [below] at (1,0) {$M$};
\node [above right] at (2,0) {$N$};
\node [left] at (60:1.9) {$P$};
\node [right] at (2,3.464) {$Q$};
\node [above left] at (0.1,2) {$R$};
\node [above] at (1.1,2) {$S$};
\node [below right] at (2,0) {$1$};
\node at (0.4,0.2) {$\theta$};
\draw [dashed] (0:0.7) arc (0:60:0.7);
\end{tikzpicture}}
\item\label{exmp:linedef}
We can extend the unit circle definition of the sine and cosine functions to all six
trigonometric functions. Let $P$ be a point in QI on the unit circle, so that the line segment
$\overline{OP}$ in Figure \ref{fig:linedef} has length $1$ and makes an acute angle $\theta$
with the positive $x$-axis. Identify each of the six trigonometric functions of $\theta$ with
exactly one of the line segments in Figure \ref{fig:linedef}, keeping in mind that the radius of
the circle is $1$. To get you started, we have $\sin\;\theta = MP$ (why?).
\item For Exercise \ref{exmp:linedef},
how would you draw the line segments in Figure \ref{fig:linedef} if $\theta$ was in QII?
Recall that some of the trigonometric functions are negative in QII, so you will have to come up
with a convention for how to treat some of the line segment lengths as negative.
\item For any point $(x,y)$ on the unit circle and any angle $\alpha$, show that the point
$R_{\alpha} (x,y)$ defined by $R_{\alpha} (x,y)
= (x\,\cos\;\alpha \,-\, y\,\sin\;\alpha , x\,\sin\;\alpha \,+\, y\,\cos\;\alpha)$ is also on the
unit circle. What is the geometric interpretation of $R_{\alpha} (x,y)$? Also, show that
$R_{-\alpha} (R_{\alpha} (x,y)) = (x,y)$ and $R_{\beta} (R_{\alpha} (x,y)) = R_{\alpha + \beta}
(x,y)$.
\end{enumerate}}
\newpage
%Begin Section 5.2
\section{Properties of Graphs of Trigonometric Functions}
We saw in Section 5.1 how the graphs of the trigonometric functions repeat every $2\pi$ radians.
In this section we will discuss this and other properties of graphs, especially for the sinusoidal
functions (sine and cosine).
First, recall that the \textbf{domain}\index{domain} of a function $f(x)$ is the
set of all numbers $x$ for which the function is defined. For example, the domain of $f(x) =
\sin\;x$ is the set of all real numbers, whereas the domain of $f(x) = \tan\;x$ is the set of all
real numbers except $x=\pm\,\frac{\pi}{2}$, $\pm\,\frac{3\pi}{2}$, $\pm\,\frac{5\pi}{2}$, $...$.
The \textbf{range}\index{range} of a function $f(x)$ is the set of all values that
$f(x)$ can take over its domain. For example, the range of $f(x)=\sin\;x$ is the set of all real
numbers between $-1$ and $1$ (i.e. the interval $\ival{-1}{1}$), whereas the range of $f(x) =
\tan\;x$ is the set of all real numbers, as we can see from their graphs.
A function $f(x)$ is \textbf{periodic} if there exists a number $p>0$ such that $x+p$ is
in the domain of $f(x)$ whenever $x$ is, and if the following relation holds:
\begin{equation}\label{eqn:periodic}
f(x+p) ~=~ f(x) \quad\text{for all $x$}
\end{equation}
There could be many numbers $p$ that satisfy the above requirements. If there is a smallest such
number $p$, then we call that number the \textbf{period}\index{period of a function} of the
function $f(x)$.
\begin{exmp}
The functions $\sin\;x$, $\cos\;x$, $\csc\;x$, and $\sec\;x$ all have the same period: $2\pi$
radians. We
saw in Section 5.1 that the graphs of $y=\tan\;x$ and $y=\cot\;x$ repeat every $2\pi$ radians
but they also repeat every $\pi$ radians. Thus, the functions $\tan\;x$ and $\cot\;x$ have a period
of $\pi$ radians.
\end{exmp}
\begin{exmp}
What is the period of $f(x)=\sin\;2x\,$?\vspace{1mm}
\par\noindent\textbf{Solution:} The graph of $y=\sin\;2x$ is shown in Figure \ref{fig:sine2x}, along
with the graph of $y=\sin\;x$ for comparison, over the interval $\ival{0}{2\pi}$.
Note that $\sin\;2x$ ``goes twice as fast'' as $\sin\;x$.
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(3,0)},dashed,line width=1pt,x=6cm/360]
\draw[black!60,line width=0.3pt,dotted] (0,-1) grid[xstep=45,ystep=1] (360,1);
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,1.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{sin(\x)}}
\pgfusepath{stroke}
\node[black,left] at (0,0) {$0$};
\foreach \pos in {45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\end{scope}
\begin{scope}[shift={(3,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{sin(2*\x)}}
\pgfusepath{stroke}
\end{scope}
\draw [linecolor,line width=1.5pt] (0,1) -- (0.5,1) node[black,right] {$y=\sin\;2x$};
\draw [dashed,line width=1pt] (0,0.5) -- (0.5,0.5) node[right] {$y=\sin\;x$};
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\sin\;2x$}
\label{fig:sine2x}
\end{figure}
For example, for $x$ from $0$ to $\frac{\pi}{2}$, $\sin\;x$ goes from $0$ to $1$, but $\sin\;2x$
is able to go from $0$ to $1$ quicker, just over the interval $\ival{0}{\frac{\pi}{4}}$.
While $\sin\;x$ takes a full $2\pi$ radians to go through an entire \emph{cycle}\index{cycle} (the
largest part of the graph that does not repeat), $\sin\;2x$ goes through an entire cycle in just
$\pi$ radians. So the period of $\sin\;2x$ is $\pi$ radians.
\end{exmp}
\divider
\newpage
The above example made use of the graph of $\sin\;2x$, but the period can be found analytically.
Since $\sin\;x$ has period $2\pi$,\footnote{We will usually leave out the ``radians'' part when
discussing periods from now on.} we know that $\sin\;(x+2\pi) = \sin\;x$ for all $x$. Since $2x$
is a number for all $x$, this means in particular that $\sin\;(2x+2\pi) = \sin\;2x$ for all $x$.
Now define $f(x)=\sin\;2x$. Then
\begin{align*}
f(x+\pi) ~&=~ \sin\;2\,(x+\pi)\\
&=~ \sin\;(2x+2\pi)\\
&=~ \sin\;2x \quad\text{(as we showed above)}\\
&=~ f(x)
\end{align*}
for all $x$, so the period $p$ of $\sin\;2x$ is \emph{at most} $\pi$, by our definition of period.
We have to show that $p>0$ can not be smaller than $\pi$. To do this, we will use a \emph{proof by
contradiction}. That is, assume that $0<p<\pi$, then show that this leads to some
contradiction, and hence can not be true. So suppose $0<p<\pi$. Then $0<2p<2\pi$, and hence
\begin{align*}
\sin\;2x ~&=~ f(x)\\
&=~ f(x+p) \quad\text{(since $p$ is the period of $f(x)$)}\\
&=~ \sin\;2(x+p)\\
&=~ \sin\;(2x+2p)
\end{align*}
for all $x$. Since any number $u$ can be written as $2x$ for some $x$ (i.e $u = 2(u/2)$), this
means that $\sin\;u = \sin\;(u+2p)$ for all real numbers $u$, and hence the period of $\sin\;x$ is
as most $2p$. This is a contradiction. Why? Because the period of $\sin\;x$ is $2\pi > 2p$. Hence,
the period $p$ of $\sin\;2x$ can not be less than $\pi$, so the period must equal $\pi$.
The above may seem like a lot of work to prove something that was visually obvious from the graph
(and intuitively obvious by the ``twice as fast'' idea). Luckily, we do not need to go through all
that work for each function, since a similar argument works when $\sin\;2x$ is replaced by
$\sin\;\omega x$ for any positive real number $\omega$: instead of dividing $2\pi$ by $2$ to get
the period, divide by $\omega$. And the argument works for the other trigonometric functions as
well. Thus, we get:
\begin{center}\statecomment{For any number $\omega >0$:
\begin{alignat*}{4}
\sin\;\omega x ~~&\text{has period}~~ \frac{2\pi}{\omega}
\qquad\quad&\csc\;\omega x ~~&\text{has period}~~ \frac{2\pi}{\omega}\\[2pt]
\cos\;\omega x ~~&\text{has period}~~ \frac{2\pi}{\omega}
\qquad\quad&\sec\;\omega x ~~&\text{has period}~~ \frac{2\pi}{\omega}\\[2pt]
\tan\;\omega x ~~&\text{has period}~~ \frac{\pi}{\omega}
\qquad\quad&\cot\;\omega x ~~&\text{has period}~~ \frac{\pi}{\omega}
\end{alignat*}
}\end{center}
If $\omega < 0$, then use $\sin\;(-A) = -\sin\;A$ and $\cos\;(-A) = \cos\;A$ (e.g.
$\sin\;(-3x) = -\sin\;3x$).
\newpage
\begin{exmp}
The period of $y=\cos\;3x$ is $\frac{2\pi}{3}$ and the period of $y=\cos\;\frac{1}{2}x$ is $4\pi$.
The graphs of both functions are shown in Figure \ref{fig:cosine3x}:
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.1,every node/.style={font=\small}]
\begin{scope}[shift={(0,0)},dashed,line width=1pt,x=6cm/360]
\draw[black!60,line width=0.3pt,dotted] (0,-1) grid[xstep=45,ystep=1] (720,1);
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (740,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,1.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,720}{\pgfpointxy{\x}{cos(3*\x)}}
\pgfusepath{stroke}
\node[black,left] at (0,0) {$0$};
\foreach \pos in {30,60,90,120,150,180,210,240,270,300,330,360,390,420,450,480,510,540,570,600,
630,660,690,720}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (30,-0.1) {$\tfrac{\pi}{6}$};
\node[black,below] at (60,-0.1) {$\tfrac{\pi}{3}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (120,-0.1) {$\tfrac{2\pi}{3}$};
\node[black,below] at (150,-0.1) {$\tfrac{5\pi}{6}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (210,-0.1) {$\tfrac{7\pi}{6}$};
\node[black,below] at (240,-0.1) {$\tfrac{4\pi}{3}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (300,-0.1) {$\tfrac{5\pi}{3}$};
\node[black,below] at (330,-0.1) {$\tfrac{11\pi}{6}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\node[black,below] at (390,-0.1) {$\tfrac{13\pi}{6}$};
\node[black,below] at (420,-0.1) {$\tfrac{7\pi}{3}$};
\node[black,below] at (450,-0.1) {$\tfrac{5\pi}{2}$};
\node[black,below] at (480,-0.1) {$\tfrac{8\pi}{3}$};
\node[black,below] at (510,-0.1) {$\tfrac{17\pi}{6}$};
\node[black,below] at (540,-0.1) {$3\pi$};
\node[black,below] at (570,-0.1) {$\tfrac{19\pi}{6}$};
\node[black,below] at (600,-0.1) {$\tfrac{10\pi}{3}$};
\node[black,below] at (630,-0.1) {$\tfrac{7\pi}{2}$};
\node[black,below] at (660,-0.1) {$\tfrac{11\pi}{3}$};
\node[black,below] at (690,-0.1) {$\tfrac{23\pi}{6}$};
\node[black,below] at (720,-0.1) {$4\pi$};
\end{scope}
\begin{scope}[shift={(0,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,720}{\pgfpointxy{\x}{cos(0.5*\x)}}
\pgfusepath{stroke}
\end{scope}
\draw [linecolor,line width=1.5pt] (2,2) -- (2.5,2) node[black,right] {$y=\cos\;\frac{1}{2}x$};
\draw [dashed,line width=1pt] (2,1.5) -- (2.5,1.5) node[right] {$y=\cos\;3x$};
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Graph of $y=\cos\;3x$ and $y=\cos\;\frac{1}{2}x$}
\label{fig:cosine3x}
\end{figure}
\end{exmp}
\divider
\vspace{1mm}
We know that $\;-1 \le \sin\;x \le 1\;$ and $\;-1 \le \cos\;x \le 1\;$ for all $x$. Thus, for a
constant $A \ne 0$,
\begin{displaymath}
-\abs{A} ~\le~ A\,\sin\;x ~\le~ \abs{A} \quad\text{and}\quad
-\abs{A} ~\le~ A\,\cos\;x ~\le~ \abs{A}
\end{displaymath}
for all $x$. In this case, we call $\abs{A}$ the \textbf{amplitude}\index{amplitude} of the
functions $y=A\,\sin\;x$ and $y=A\,\cos\;x$. In general, the amplitude of a periodic curve $f(x)$
is half the difference of the largest and smallest values that $f(x)$ can take:
\begin{displaymath}
\text{Amplitude of $f(x)$} ~=~ \frac{\text{(maximum of $f(x)$)} ~-~ \text{(minimum of $f(x)$)}}{2}
\end{displaymath}
In other words, the amplitude is the distance from either the top or bottom of the curve to the
horizontal line that divides the curve in half, as in Figure \ref{fig:amplitude}.
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(0,0)},color=linecolor,line width=1.5pt,x=6cm/360]
\draw[black!60,line width=0.3pt,dotted] (0,-1) grid[xstep=45,ystep=1] (360,1);
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,1.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{sin(2*\x)}}
\pgfusepath{stroke}
\node[black,left] at (0,0) {$0$};
\foreach \pos in {45,90,135,180,225,270,315,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt);
\node[black,left] at (0,1) {$\abs{A}$};
\node[black,left] at (0,-1) {$-\abs{A}$};
\node[black,below] at (45,-0.1) {$\tfrac{\pi}{4}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (135,-0.1) {$\tfrac{3\pi}{4}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (225,-0.1) {$\tfrac{5\pi}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (315,-0.1) {$\tfrac{7\pi}{4}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\end{scope}
\begin{scope}[>=latex]
\draw [|<->|] (-1,-1) -- (-1,1) node[midway,fill=white] {$2\,\abs{A}$};
\draw [|<->|] (7,0) -- (7,1) node[midway,right] {$\abs{A}$};
\draw [<->|] (7,0) -- (7,-1) node[midway,right] {$\abs{A}$};
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad Amplitude $= \frac{\text{max} - \text{min}}{2} = \frac{\abs{A} - (-\abs{A})}{2} =
\abs{A}$}
\label{fig:amplitude}
\end{figure}
Not all periodic curves have an amplitude. For example, $\tan\;x$ has neither a maximum nor a
minimum, so its amplitude is undefined. Likewise, $\cot\;x$, $\csc\;x$, and $\sec\;x$ do not have
an amplitude. Since the amplitude involves vertical distances, it has no effect on the period of
a function, and vice versa.
\newpage
\begin{exmp}
Find the amplitude and period of $y=3\,\cos\;2x$.\vspace{1mm}
\par\noindent\textbf{Solution:} The amplitude is $\abs{3} = 3$ and the period is
$\frac{2\pi}{2}=\pi$. The graph is shown in Figure \ref{fig:exmp3cos2x}:\vspace{-2mm}
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(0,0)},color=linecolor,line width=1.5pt,x=8cm/360,y=1.5cm/3]
\draw[black!60,line width=0.3pt,dotted] (0,-3) grid[xstep=45,ystep=1] (360,3);
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (380,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-3.2) -- (0,3.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{3*cos(2*\x)}}
\pgfusepath{stroke}
\node[black,left] at (0,0) {$0$};
\foreach \pos in {30,60,90,120,150,180,210,240,270,300,330,360}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-3,-2,-1,1,2,3}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (30,-0.1) {$\tfrac{\pi}{6}$};
\node[black,below] at (60,-0.1) {$\tfrac{\pi}{3}$};
\node[black,below] at (90,-0.1) {$\tfrac{\pi}{2}$};
\node[black,below] at (120,-0.1) {$\tfrac{2\pi}{3}$};
\node[black,below] at (150,-0.1) {$\tfrac{5\pi}{6}$};
\node[black,below] at (180,-0.1) {$\pi$};
\node[black,below] at (210,-0.1) {$\tfrac{7\pi}{6}$};
\node[black,below] at (240,-0.1) {$\tfrac{4\pi}{3}$};
\node[black,below] at (270,-0.1) {$\tfrac{3\pi}{2}$};
\node[black,below] at (300,-0.1) {$\tfrac{5\pi}{3}$};
\node[black,below] at (330,-0.1) {$\tfrac{11\pi}{6}$};
\node[black,below] at (360,-0.1) {$2\pi$};
\end{scope}
\begin{scope}[>=latex]
\draw [|<->|] (-1,-1.5) -- (-1,1.5) node[midway,fill=white] {$6$};
\draw [|<->|] (9,0) -- (9,1.5) node[midway,right] {$3$};
\draw [<->|] (9,0) -- (9,-1.5) node[midway,right] {$3$};
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad $y=3\,\cos\;2x$}
\label{fig:exmp3cos2x}
\end{figure}
\end{exmp}\vspace{-7mm}
\begin{exmp}
Find the amplitude and period of $y=2 - 3\,\sin\;\frac{2\pi}{3}x$.\vspace{1mm}
\par\noindent\textbf{Solution:} The amplitude of $-3\,\sin\;\frac{2\pi}{3}x$ is $\abs{-3} =3$. Adding
$2$ to that function to get the function
$y=2 - 3\,\sin\;\frac{2\pi}{3}x$ does not change the amplitude, even
though it does change the maximum and minimum. It just shifts the entire graph upward by $2$. So
in this case, we have
\begin{displaymath}
\text{Amplitude} ~=~ \frac{\text{max} ~-~ \text{min}}{2} ~=~ \frac{5 ~-~ (-1)}{2} ~=~ \frac{6}{2}
~=~ 3 ~.
\end{displaymath}
The period is $\dfrac{2\pi}{\frac{2\pi}{3}}=3$. The graph is shown in Figure \ref{fig:exmp2m3sinx}:\vspace{-1mm}
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}[scale=1.2,every node/.style={font=\small}]
\begin{scope}[shift={(0,0)},color=linecolor,line width=1.5pt,x=8cm/540,y=2cm/3]
\draw[black!60,line width=0.3pt,dotted] (0,-1) grid[xstep=45,ystep=1] (540,5);
\draw[black!60,line width=0.3pt,-latex] (0,0) -- (560,0) node[right] {$x$};
\draw[black!60,line width=0.3pt,-latex] (0,-1.2) -- (0,5.5) node[above] {$y$};
\pgfplothandlerlineto
\pgfplotfunction{\x}{0,5,...,540}{\pgfpointxy{\x}{2-3*sin(2*\x/3)}}
\pgfusepath{stroke}
\node[black,left] at (0,0) {$0$};
\foreach \pos in {135,270,405,540}
\draw[black!60,line width=0.3pt,shift={(\pos,0)}] (0pt,3pt) -- (0pt,-3pt);
\foreach \pos in {-1,1,2,3,4,5}
\draw[black!60,line width=0.3pt,shift={(0,\pos)}] (3pt,0pt) -- (-3pt,0pt) node[black,left]
{$\pos$};
\node[black,below] at (135,-0.1) {$\tfrac{3}{4}$};
\node[black,below] at (270,-0.1) {$\tfrac{3}{2}$};
\node[black,below] at (405,-0.1) {$\tfrac{9}{4}$};
\node[black,below] at (540,-0.1) {$3$};
\draw[dashed,black!60,line width=0.5pt] (0,2) -- (540,2);
\end{scope}
\begin{scope}[>=latex]
\draw [|<->|] (-1,-0.67) -- (-1,3.33) node[midway,fill=white] {$6$};
\draw [|<->|] (9,1.33) -- (9,3.33) node[midway,right] {$3$};
\draw [<->|] (9,1.33) -- (9,-0.67) node[midway,right] {$3$};
\end{scope}
\end{tikzpicture}\vspace{-6mm}
\end{center}
\caption[]{\quad $y=2-3\,\sin\;\frac{2\pi}{3}x$}
\label{fig:exmp2m3sinx}
\end{figure}
\end{exmp}\vspace{-5mm}
\divider\vspace{-2mm}
\newpage
\begin{exmp}\label{exmp:2sinx2}
Find the amplitude and period of $y=2\,\sin\;( x^2 )$.\vspace{1mm}
\par\noindent\textbf{Solution:} This is not a periodic function, since the angle that we are taking
the sine of, $x^2$, is not a \emph{linear} function of $x$, i.e. is not of the form $ax+b$ for some
constants $a$ and $b$. Recall how we argued that $\sin\;2x$ was ``twice as fast'' as $\sin\;x$, so
that its period was $\pi$ instead of $2\pi$. Can we say that $\sin\;( x^2 )$ is some
\emph{constant}
times as fast as $\sin\;x\,$? No. In fact, we see that the ``speed'' of the curve keeps increasing
as $x$ gets larger, since $x^2$ grows at a variable rate, not a constant rate. This can be seen in
the graph of $y=2\,\sin\;( x^2 )$, shown in Figure \ref{fig:exmp2sinx2}:\footnote{This graph was
created using Gnuplot, an open-source graphing program which is freely available at
\url{http://gnuplot.info}. See Appendix B for a brief tutorial on how to use Gnuplot.}\vspace{-1mm}
\begin{figure}[h]
\begin{center}
\input{sinx2.tex}\vspace{-6mm}
\end{center}
\caption[]{\quad $y=2\,\sin\;( x^2 )$}
\label{fig:exmp2sinx2}
\end{figure}
Notice how the curve ``speeds up'' as $x$ gets larger, making the ``waves'' narrower and narrower.
Thus, $y=2\,\sin\;( x^2 )$ has no period. Despite this, it appears that the function does have an
amplitude, namely $2$. To see why, note that since $\abs{\sin\;\theta} \le 1$ for all $\theta$, we
have
\begin{displaymath}
\abs{2\,\sin\;( x^2 )} ~=~ \abs{2} \;\cdot\; \abs{\sin\;( x^2 )} ~\le~ 2 \;\cdot\; 1 ~=~ 2 ~.
\end{displaymath}
In the exercises you will be asked to find values of $x$ such that $2\,\sin\;( x^2 )$ reaches the
maximum value $2$ and the minimum value $-2$. Thus, the amplitude is indeed $2$.\\Note: This curve
is still sinusoidal despite not being periodic, since the general shape is still that of a ``sine
wave'', albeit one with variable \emph{cycles}.
\end{exmp}\vspace{-3mm}
\divider
\vspace{1mm}
So far in our examples we have been able to determine the amplitudes of sinusoidal curves fairly
easily. This will not always be the case.
\newpage
\begin{exmp}\label{exmp:3sinx4cosx}
Find the amplitude and period of $y=3\,\sin\;x + 4\,\cos\;x$.\vspace{1mm}
\par\noindent\textbf{Solution:} This is sometimes called a \emph{combination} sinusoidal curve, since
it is the sum of two such curves. The period is still simple to determine: since
$\sin\;x$ and $\cos\;x$ each repeat every $2\pi$ radians, then so does the combination
$3\,\sin\;x + 4\,\cos\;x$. Thus, $y=3\,\sin\;x + 4\,\cos\;x$ has period $2\pi$. We can see this in