-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
485 lines (369 loc) · 21.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#!/usr/bin/python3
# -*- coding: UTF-8 -*-
import torch
import numpy as np
import cv2
import tqdm
import argparse
import os
import time
import random
import json
import math
import sys
from data import *
from sigth2sound import *
from tools.utils import *
from torch.utils.tensorboard import SummaryWriter
import scipy
from scipy.stats import multivariate_normal
import pdb
def collate(batch):
batch = list(filter(lambda x:x is not None, batch))
if len(batch) == 0:
raise Exception('No sample on batch')
return torch.utils.data.dataloader.default_collate(batch)
def train_gcn(args,device):
time_init = str(time.ctime(int(time.time()))).replace(" ","_")
if args.summary is None:
log_summary = '/tmp/summary/'
else:
log_summary = args.summary
summary = SummaryWriter(log_dir=log_summary)
gen_checkpoint_path = args.ckp_save_path+'_generator.pt'
dis_checkpoint_path = args.ckp_save_path+'_discriminator.pt'
try:
os.makedirs(args.ckp_save_path,exist_ok=True)
except Exception as e:
pass
dataset = pose_audio_dataset(args.dataset, sample_size=64, stride=32, \
data_aug = True, create_z=False, sample_rate=16000, keep_wav=True, styles_to_remove=[],pre_process=True)
styles_dic = dataset.styles
dataloaders = {
'train' : torch.utils.data.DataLoader(dataset, batch_size=args.bs, shuffle=True, num_workers=args.workers, collate_fn=collate)
}
##############################################
#### NETWORKS INITIALIZATION #################
##############################################
generator_network = Generator(device,args.num_class,args.dropout)
generator_optimizer_ft = torch.optim.Adam(filter(lambda p: p.requires_grad, generator_network.parameters()), lr=args.lr_g,betas=(0.5, 0.999))
generator_exp_lr_scheduler = torch.optim.lr_scheduler.StepLR(generator_optimizer_ft, step_size=30, gamma=0.1)
generator_network.to(device)
discriminator = Discriminator(device,args.num_class,args.size_sample)
if args.adam:
discriminator_optimizer_ft = torch.optim.Adam(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.lr_d,betas=(0.5, 0.999))
else:
discriminator_optimizer_ft = torch.optim.SGD(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.lr_d)
discriminator_exp_lr_scheduler = torch.optim.lr_scheduler.StepLR(discriminator_optimizer_ft, step_size=30, gamma=0.1)
discriminator.to(device)
generator_params,discriminator_params = sum(p.numel() for p in generator_network.parameters() if p.requires_grad ),sum(p.numel() for p in discriminator.parameters() if p.requires_grad)
######INIT WEIGHTS#######
init_weights(generator_network)
init_weights(discriminator)
#########################
if args.mse:
bce_loss = torch.nn.MSELoss().to(device)
else:
bce_loss = torch.nn.BCELoss().to(device)
####################
##TRAINING LOOP#####
####################
step = 0
for epoch in range(args.epochs):
# generator_network.train()
# for batch_idx, (poses,labels) in enumerate(dataloaders['train']):
try:
for batch_idx, (poses, audio, z, labels, target) in enumerate(dataloaders['train']):
generator_network.train()
discriminator.train()
valid = torch.Tensor(np.random.uniform(low=0.7, high=1.2, size=(len(poses)))).to(device)
fake = torch.Tensor(np.random.uniform(low=0.0, high=0.3, size=(len(poses)))).to(device)
# valid = torch.Tensor(np.random.uniform(low=1, high=1, size=(len(poses)))).to(device)
# fake = torch.Tensor(np.random.uniform(low=0, high=0, size=(len(poses)))).to(device)
#coin to cheat the discriminator
flip = random.random() > args.flip
poses = poses.permute(0,3,1,2).to(device)
labels = labels.to(device)
target = target.to(device)
z = z.to(device)
audio = audio.to(device)
fake_pose = generator_network(labels,z)
pred_fake = discriminator(fake_pose,labels)
l1 = loss_l1(fake_pose,poses)
l2 = loss_l2(fake_pose, poses)
lg = bce_loss(torch.flatten(pred_fake),valid)
lgen = args.lambda_l1*l1+args.lambda_discriminator*lg+args.lambda_l2*l2
generator_optimizer_ft.zero_grad()
lgen.backward(retain_graph=True)
generator_optimizer_ft.step()
fake_pose = fake_pose.detach()
if flip:
discriminator_pred_fake = discriminator(poses,labels)
discriminator_pred_real = discriminator(fake_pose,labels)
else:
discriminator_pred_fake = discriminator(fake_pose,labels)
discriminator_pred_real = discriminator(poses,labels)
ld_real = bce_loss(torch.flatten(discriminator_pred_real),valid)
ld_fake = bce_loss(torch.flatten(discriminator_pred_fake),fake)
ld = (ld_real+ld_fake)*0.5
discriminator_optimizer_ft.zero_grad()
ld.backward()
discriminator_optimizer_ft.step()
######LOGS########
print('Train Epoch: {}/{} [{}/{} ({:.0f}%)]\t Loss: G: {:.5f}|D: {:.5f}'.format(
epoch, args.epochs ,batch_idx * len(poses), len(dataloaders['train'].dataset),
100. * batch_idx / len(dataloaders['train']),lgen.data.tolist(),ld.data.tolist()))
step = step + 1
summary.add_scalar('GCcGAN_Loss/Generator',lgen.data.tolist() , step)
summary.add_scalar('GCcGAN_Loss/Discriminator',ld.data.tolist() , step)
summary.add_scalar('GCcGAN_Loss_Generator/l1',l1.data.tolist() , step)
summary.add_scalar('GCcGAN_Loss_Generator/l2',l2.data.tolist() , step)
# summary.add_scalar('GCcGAN_Loss_Generator/l1_X',l1x.data.tolist() , step)
# summary.add_scalar('GCcGAN_Loss_Generator/l1_Y',l1y.data.tolist() , step)
summary.add_scalar('GCcGAN_Loss_Generator/lgan',lg.data.tolist() , step)
# break
######ALL LOSS 1 GRAPH#####
####GENERATE TO MUCH FILES ON STORAGE FOR ALL SUMMAIRES##########
# summary.add_scalars('GCcGAN_Loss_Generator/all',{'l1':l1.data.tolist(),'generator':lg.data.tolist()},step)
# summary.add_scalars('GCcGAN_Loss/Both',{'generator':lgen.data.tolist(),'discriminator':ld.data.tolist()},step)
# draw_weights('discriminator_',discriminator,summary,step)
except Exception as e:
print('exece',e)
#print(e)
#pdb.set_trace()
pass
##########DRAWWING WEIGHTS##########
draw_weights('generator_',generator_network,summary,epoch)
draw_weights('discriminator_',discriminator,summary,epoch)
####################################
if epoch%100 == 99:
######making videos#####
generator_network.eval()
##RENDER TRAIN IMAGES####
draw_poses = generator_network(labels,z)
output_array_gt = np.array(draw_poses.permute(0,2,3,1).cpu().data)
for idx,pose in enumerate(output_array_gt):
images,images_white = render(pose,args.size_sample)
i = int(labels[idx,:])
tensor_images = torch.Tensor(images).view(1,images.shape[0],images.shape[1],images.shape[2],images.shape[3]).permute(0,1,4,2,3)
tensor_images_white = torch.Tensor(images_white).view(1,images_white.shape[0],images_white.shape[1],images_white.shape[2],images_white.shape[3]).permute(0,1,4,2,3)
if i < 3:
summary.add_video('gif_train/black_train_'+str(styles_dic[i])+'_'+str(idx%10),tensor_images,epoch,15)
summary.add_video('gif_train/white_train_'+str(styles_dic[i])+'_'+str(idx%10),tensor_images_white,epoch,15)
# summary.add_images('images/white_train_images'+str(i%3),tensor_images_white[0],epoch)
# summary.add_images('images/black_train_images'+str(i%10),tensor_images[0],epoch)
else:
break
##RENDER TEST IMAGES####
# z_train = np.random.randint(0,len(dataset),10)
# z_test = np.random.randint(len(dataset),2*len(dataset),len(z))
# tensor_z = []
# for idx in z_train:
# tensor_z.append(torch.Tensor(make_z_vary(idx,1024,64,4)).view(1024,-1,1))
# for idx in z_test:
# tensor_z.append(torch.Tensor(make_z_vary(idx,512,64,4)).view(512,-1,1))
# tensor_z = torch.stack(tensor_z).to(device)
# labels = torch.LongTensor([0,1,2]).to(device)
# if args.ft:
# draw_poses = generator_network(ft_vectors,tensor_z)
# else:
# draw_poses = generator_network(labels,tensor_z)
# output_array = np.array(draw_poses.permute(0,2,3,1).cpu().data)
# for idx,pose in enumerate(output_array):
# if idx < 3:
# images,images_white = render(pose,args.size_sample)
# tensor_images = torch.Tensor(images).view(1,images.shape[0],images.shape[1],images.shape[2],images.shape[3]).permute(0,1,4,2,3)
# tensor_images_white = torch.Tensor(images_white).view(1,images_white.shape[0],images_white.shape[1],images_white.shape[2],images_white.shape[3]).permute(0,1,4,2,3)
# i = int(labels[idx])
# # if i < 10:
# # summary.add_video('gif/black_train'+str(i%10),tensor_images,epoch,15)
# # summary.add_video('gif/white_train'+str(i%10),tensor_images_white,epoch,15)
# # summary.add_images('images/white_train_images'+str(i%3),tensor_images_white[0],epoch)
# # summary.add_images('images/black_train_images'+str(i%10),tensor_images[0],epoch)
# # else:
# summary.add_video('gif_test/black_test_'+str(styles_dic[i])+'_'+str(idx%10),tensor_images,epoch,15)
# summary.add_video('gif_test/white_test_'+str(styles_dic[i])+'_'+str(idx%10),tensor_images_white,epoch,15)
# # summary.add_images('images/white_test_images'+str(i%3),tensor_images_white[0],epoch)
# # summary.add_images('images/black_test_images'+str(i%10),tensor_images[0],epoch)
# else:
# break
# draw_poses = generator_network(None,z_mean)
# output_array = np.array(draw_poses.permute(0,2,3,1).cpu().data)
# gt_array = np.array(mean_kps.permute(0,2,3,1).cpu().data)
# # # pdb.set_trace()
# # for i,pose in enumerate(output_array):
# # images = render(pose,args.size_sample)
# # tensor_images = torch.Tensor(images).view(1,images.shape[0],images.shape[1],images.shape[2],images.shape[3]).permute(0,1,4,2,3)
# # if i < 1:
# # # summary.add_video('Prediction/train_'+str(i%5),tensor_images,epoch,15)
# # summary.add_video('Overfit/predict'+str(i%5),tensor_images,epoch,15)
# # else:
# # break
# # # summary.add_video('Prediction/test_'+str(i%5),tensor_images,epoch,15)
# # # summary.add_video('Overfit/test_'+str(i%5),tensor_images,epoch,15)
# for i,pose in enumerate(gt_array):
# images,images_white = render(pose,args.size_sample)
# tensor_images = torch.Tensor(images).view(1,images.shape[0],images.shape[1],images.shape[2],images.shape[3]).permute(0,1,4,2,3)
# tensor_images_white = torch.Tensor(images_white).view(1,images_white.shape[0],images_white.shape[1],images_white.shape[2],images_white.shape[3]).permute(0,1,4,2,3)
# if i < 1:
# # summary.add_video('Prediction/train_'+str(i%5),tensor_images,epoch,15)
# summary.add_video('Overfit/gt'+str(i%5),tensor_images,epoch,15)
# summary.add_video('Overfit/white_gt'+str(i%5),tensor_images_white,epoch,15)
# else:
# break
###render recive array of shape n,25,2
# poses_gt = np.array(poses.cpu().data)
# for i in range(args.num_class):
# label = torch.LongTensor([i]).to(device)
# z1 = torch.Tensor(make_z(1,args.size_sample)).view(len(label),1,args.size_sample,25).to(device)
# fake_poses = generator_network(label,torch.cat((z1,mean_kp.repeat(len(z1),1,1,1)),1))
# outputs_array = np.array(fake_poses.cpu().data)
# images = render(outputs_array[0,:,:,:],args.size_sample)
# # tensor_images = torch.Tensor(images).view(1,images.shape[0],images.shape[1],images.shape[2],images.shape[3]).permute(0,1,4,2,3)
# tensor_images = torch.Tensor(images).view(1,images.shape[0],images.shape[1],images.shape[2],images.shape[3]).permute(0,1,4,2,3)
# summary.add_video('Prediction/'+str(styles_dic[i]),tensor_images,epoch,15)
torch.save(generator_network.state_dict(),gen_checkpoint_path)
torch.save(discriminator.state_dict(), dis_checkpoint_path)
return
def init_weights(model):
for param in model.parameters():
try:
torch.nn.init.xavier_normal_(param.data)
except:
pass
def get_audio_torch(input_path):
import torchaudio
audio, sr = torchaudio.load(input_path)
if audio.shape[0] == 2:
audio = audio.sum(axis=0)/2
audio = audio.reshape(1,-1)
audio = torchaudio.transforms.Resample(sr,16000)(audio)
audio = torchaudio.functional.mu_law_encoding(audio,16)
return audio.float()
def test(args,device):
#actual 0->ballet;1->country;2->michael
#old 0->ballet;1->michael;2->country
styles_dic = {0:0,1:2,2:1}
audio_model = cnn_1d_soudnet(3)
audio_model.load_state_dict(torch.load(args.a_ckp_path))
audio_model.to(device)
model = Generator(device,args.num_class,args.dropout,False)
model.load_state_dict(torch.load(args.ckp_path))
model.to(device)
audio_model.eval()
model.eval()
audio = get_audio_torch(args.input)
video_size = int((audio.shape[1]/16000)*args.fps)
z = torch.Tensor(make_z_vary(None, 512, args.size_video, int(video_size/16))).view(1,512,-1,1).to(device)
label = audio_model(audio[:,:int(int(audio.shape[1]/int(z.shape[2]/4))*int(z.shape[2]/4))].to(device).view(int(z.shape[2]/4),1,-1))
label = label.argmax(1).cpu().data.to(device)
draw_poses = model(label,z)
notorch_pose = draw_poses[0].permute(1, 2, 0).cpu().data.numpy()
try:
os.mkdir(args.out_video)
except:
pass
label_0 = label.cpu().data.tolist()[0]
if label_0 == 0:
video_name = '/ballet'
elif label_0 == 1:
video_name = '/michael'
elif label_0 == 2:
video_name = '/salsa'
os.makedirs(args.out_video + video_name + '/vid2vid/test_img/', exist_ok=True)
make_video(args.out_video + video_name + '/' + video_name, notorch_pose,video_size)
f = open(args.out_video + video_name +'/labels.txt', "w")
for l in label.cpu().data.tolist():
if l == 0:
f.write('ballet\t')
elif l == 1:
f.write('michael\t')
elif l == 2:
f.write('salsa\t')
f.close()
cmd = "ffmpeg -loglevel error -i '" + args.out_video + video_name + '/' + video_name + "_black.mp4' '" + \
args.out_video + video_name + '/vid2vid/test_img/' + video_name + "_%04d.jpg'"
os.system(cmd)
write_jsons(args.out_video + video_name, notorch_pose, draw_poses.shape[2])
if args.splines:
do_splines(args.out_video + video_name + '/vid2vid/')
return
def main():
args = parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.phase in ['train_cgan','train']:
train_gcn(args,device)
else:
test(args,device)
return
def parse_args():
""" Parse input arguments """
parser = argparse.ArgumentParser(description='Sound2Sigth code for training and test.')
parser.add_argument('-p', '--phase', dest='phase', default='train',help='demo or extract feature. e.g., [train OR test].')
parser.add_argument('-d', '--dataset', dest='dataset', help='path to .csv file with the dataset info.')
parser.add_argument('--ckp_save_path', dest='ckp_save_path', help='path to save checkpoints of the model')
parser.add_argument('--summary_dir', dest='summary', help='path to save summaries of training')
parser.add_argument('-e', '--epochs',type=int, dest='epochs', help='number of epochs', default='500')
parser.add_argument('-b', '--batch_size',type=int, dest='bs', help='batch size', default='8')
parser.add_argument('--lr_g', type=float, dest='lr_g', help='learning_rate', default='0.002')
parser.add_argument('--lr_d', type=float, dest='lr_d', help='learning_rate', default='0.0002')
parser.add_argument('-c', '--n_class', type=int, dest='num_class', help='number of class', default='3')
parser.add_argument('-s', '--size_sample', type=int, dest='size_sample', help='number of frames to predict', default='64')
parser.add_argument('--workers',dest='workers', type=int, default=12, help="number of cpu threads to use during batch generation")
parser.add_argument('--l1',dest='l1',action='store_true',help='Use L1 norm in training')
parser.add_argument('--mse',dest='mse',action='store_true',help='Use MSE instead of BCE in training')
parser.add_argument('--adam',dest='adam',action='store_true',help='Use ADAM instead of SGD as discriminator optimizer')
parser.add_argument('--flip', type=float, dest='flip', help='trick the discriminator fliping values', default='1')
parser.add_argument('-k', '--cpk_path', dest='ckp_path', help='path to load the checkpoints of the model')
parser.add_argument('-o', '--out_video', dest='out_video', help='path to save videos *.mp4')
parser.add_argument('-n', '--n_videos', dest='n_videos', type=int, default=1, help='number of video to be generated')
parser.add_argument('--size_video', dest='size_video', type=int, default=64, help='size of the video to be generated')
parser.add_argument('--lambda_l1', dest='lambda_l1', type=int, default=100, help='Lambda L1')
parser.add_argument('--lambda_l2', dest='lambda_l2', type=int, default=0, help='Lambda L1')
parser.add_argument('--lambda_discriminator', dest='lambda_discriminator', type=int, default=1, help='Lambda Discriminator')
parser.add_argument('--dropout', dest='dropout', type=float, default=0.5, help='Use Dropout in the Generator')
parser.add_argument('--audio_ckp', dest='a_ckp_path', help='path to checkpoints of the audio classifier model')
parser.add_argument('-i', '--input', dest='input', help='input *.wav file with path sound to test')
parser.add_argument('--fps', dest='fps', type=int, default=15, help='FPS of the final generate video.')
parser.add_argument('--splines',dest='splines', default=True,action='store_true',help='Generate the output smooth by cubic splines')
args = parser.parse_args()
if args.phase != 'train' and args.phase != 'test':
parser.error("[--phase] only works in train and test phases")
sys.exit()
if args.phase == 'train' and args.dataset is None:
parser.error("[--phase] train requires [--dataset]")
sys.exit()
if args.phase == 'train' and args.ckp_save_path is None:
parser.error("[--phase] train requires [--ckp_save_path]")
sys.exit()
if args.phase == 'test' and args.ckp_path is None:
parser.error("[--phase] test requires [--cpk_path]\nAlso you probably would like to use [--n_videos] and [--size_video]")
sys.exit()
if args.phase == 'test' and args.a_ckp_path is None:
parser.error("[--phase] test requires [--audio_ckp]\nAlso you probably would like to use [--n_videos] and [--size_video]")
sys.exit()
if args.phase == 'test' and args.out_video is None:
parser.error("[--phase] test requires [--out_video]\nAlso you probably would like to use [--n_videos] and [--size_video]")
sys.exit()
if args.phase == 'test' and args.input is None:
parser.error("[--phase] test requires [--out_video]\nAlso you probably would like to use [--n_videos] and [--size_video]")
sys.exit()
return args
def make_z_vary(idx,c,t,m):
if idx is not None:
np.random.seed(idx)
else:
np.random.seed()
xs = np. linspace (0,1000,m) # Test input vector
mxs = np.zeros(m) # Zero mean vector
z = []
for i in range(c):
# lsc = ((float(i)+1)/1024)*100
lsc = ((float(i)+1)/c)*(100*(1024/c))
Kss = np.exp((-1*(xs[:,np.newaxis]-xs[:,np.newaxis ].T)**2)/(2*lsc**2)) # Covariance matrix
fs = multivariate_normal(mean=mxs ,cov=Kss , allow_singular =True).rvs(1).T
z.append(fs)
z = np.asarray(z)
return z
if __name__ == '__main__':
main()