-
Notifications
You must be signed in to change notification settings - Fork 17
/
regress_elm_tr.m
70 lines (62 loc) · 2.63 KB
/
regress_elm_tr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
function [model] = regress_elm_tr(X,Y,param)
%Train a basic Extreme Learning Machine regressor.
% X : each row is a sample.
% Y : a column vector.
% PARAM: struct of parameters. The beginning part of this code (before
% defParam) explains each parameter, and also sets the default parameters.
% You can change parameter p to x by setting PARAM.p = x. For parameters
% that are not set, default values will be used.
% Return:
% MODEL: a struct containing coefficients.
%
% Derived from Huang's Extreme Learning Machine code.
%%%% Authors: MR QIN-YU ZHU AND DR GUANG-BIN HUANG
%%%% NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE
%%%% EMAIL: [email protected]; [email protected]
%%%% WEBSITE: http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
%%%% DATE: APRIL 2004
X = X';
nSmp = size(X,2);
nFt = size(X,1);
hidNum = ceil(nFt*1)*3; % Number of hidden neurons assigned to the ELM
% actFunName - Type of activation function:
% 'sig' for Sigmoidal function
% 'sin' for Sine function
% 'hardlim' for Hardlim function
% 'tribas' for Triangular basis function
% 'radbas' for Radial basis function (for additive type of SLFNs instead of RBF type of SLFNs)
actFunName = 'lin';
C = .02; % regulation parameter, OutputWeight = (eye(size(H,1))/C+H * H') \ H * Y';
defParam
%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases BiasofHiddenNeurons (b_i) of hidden neurons
InputWeight = rand(hidNum,nFt)*2-1;
BiasofHiddenNeurons = rand(hidNum,1);
tempH = InputWeight*X;
tempH = tempH+repmat(BiasofHiddenNeurons,1,nSmp);
%%%%%%%%%%% Calculate hidden neuron output matrix H
switch lower(actFunName)
case {'sig','sigmoid'}
actFun = @(x)1 ./ (1 + exp(-x));
case {'sin','sine'}
actFun = @(x)sin(x);
case {'hardlim'}
actFun = @(x)double(hardlim(x));
case {'tribas'}
actFun = @(x)tribas(x);
case {'rbf','radbas'}
actFun = @(x)radbas(x);
case {'lin'}
actFun = @(x)x;
end
H = actFun(tempH);
%%%%%%%%%%% Calculate output weights OutputWeight (beta_i)
% OutputWeight = pinv(H') * Y';% without regularization factor //refer to 2006 Neurocomputing paper
OutputWeight = (eye(size(H,1))/C+H * H') \ H * Y; % faster method 1 //refer to 2012 IEEE TSMC-B paper
%If you use faster methods or kernel method, PLEASE CITE in your paper properly:
%Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang, "Extreme Learning Machine for Regression and Multi-Class Classification," submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, October 2010.
trainOutput = H'*OutputWeight;
model.InputWeight = InputWeight;
model.actFun = actFun;
model.BiasofHiddenNeurons = BiasofHiddenNeurons;
model.OutputWeight = OutputWeight;
end