-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
85 lines (60 loc) · 2.04 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
def lib(data):
centroid=np.array([[0.10,0.60],[0.3,0.2]])
kmeans=KMeans(n_clusters=2,init=centroid).fit(data)
return kmeans.labels_,kmeans.cluster_centers_
def caldistance(data,centroid):
dist1=[]
dist2=[]
for i in range(len(data)):
dist1.append(np.sqrt((data.iloc[i][0]-centroid.iloc[0][0])**2+(data.iloc[i][1]-centroid.iloc[0][1])**2))
for i in range(len(data)):
dist2.append(np.sqrt((data.iloc[i][0]-centroid.iloc[1][0])**2+(data.iloc[i][1]-centroid.iloc[1][1])**2))
return dist1,dist2
def formclusters(dist1,dist2,data):
d1={'x':[],'y':[]}
d2={'x':[],'y':[]}
#print(dist2)
for i in range(len(dist1)):
if(dist1[i]<dist2[i]):
d1['x'].append(data.iloc[i][0])
d1['y'].append(data.iloc[i][1])
else:
d2['x'].append(data.iloc[i][0])
d2['y'].append(data.iloc[i][1])
cluster1=pd.DataFrame(data=d1,columns=['x','y'])
cluster2=pd.DataFrame(data=d2,columns=['x','y'])
return cluster1,cluster2
def calcentroid(cluster1,cluster2):
d={'x':[],'y':[]}
d['x'].append(np.sum(cluster1['x'])/len(cluster1))
d['y'].append(np.sum(cluster1['y'])/len(cluster1))
d['x'].append(np.sum(cluster2['x'])/len(cluster2))
d['y'].append(np.sum(cluster2['y'])/len(cluster2))
return pd.DataFrame(data=d,columns=['x','y'])
def kmeans(data):
centroid=[[0.10,0.60],[0.3,0.2]]
centroid=pd.DataFrame(centroid,columns=['x','y'])
while(True):
dist1,dist2=caldistance(data,centroid)
cluster1,cluster2=formclusters(dist1,dist2,data)
print("Current centroid:",centroid)
newcentroid=calcentroid(cluster1,cluster2)
if(newcentroid.equals(centroid)):
break
centroid=newcentroid
print("cluster1:",cluster1)
print("cluster2:",cluster2)
print("centroid:",centroid)
def main():
data=pd.read_csv("as4.csv")
print(data)
labels,centers=lib(data)
print("labels:",labels)
print("Cluster centers:",centers)
print("using hard coded function:")
kmeans(data)
if __name__ == '__main__':
main()