forked from Gregor-Mendel-Institute/mlmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mlmm.r
376 lines (321 loc) · 16 KB
/
mlmm.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
##############################################################################################################################################
###MLMM - Multi-Locus Mixed Model
###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH
#######
#
##note: require EMMA
#library(emma)
#source('emma.r')
#
##REQUIRED DATA & FORMAT
#
#PHENOTYPE - Y: a vector of length m, with names(Y)=individual names
#GENOTYPE - X: a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names
#KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names
#each of these data being sorted in the same way, according to the individual name
#
##FOR PLOTING THE GWAS RESULTS
#SNP INFORMATION - snp_info: a data frame having at least 3 columns:
# - 1 named 'SNP', with SNP names (same as colnames(X)),
# - 1 named 'Chr', with the chromosome number to which belong each SNP
# - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to.
#######
#
##FUNCTIONS USE
#save this file somewhere on your computer and source it!
#source('path/mlmm.r')
#
###FORWARD + BACKWARD ANALYSES
#mygwas<-mlmm(Y,X,K,nbchunks,maxsteps)
#X,Y,K as described above
#nbchunks: an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory
#maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0,
# however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used.
# It's value must be specified as an integer >= 3
#
###RESULTS
#
##STEPWISE TABLE
#mygwas$step_table
#
##PLOTS
#
##PLOTS FORM THE FORWARD TABLE
#plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC'))
#
##RSS PLOT
#plot_step_RSS(mygwas)
#
##GWAS MANHATTAN PLOTS
#
#FORWARD STEPS
#plot_fwd_GWAS(mygwas,step,snp_info,pval_filt)
#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
#snp_info as described above
#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
#
#OPTIMAL MODELS
#Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria
#
#plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt)
#snp_info as described above
#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
#
##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST
#plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2)
#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
#snp_info as described above
#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
#chrom is an integer specifying the chromosome on which the region of interest is
#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
#
#plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2)
#snp_info as described above
#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
#chrom is an integer specifying the chromosome on which the region of interest is
#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
#
##QQPLOTS of pvalues
#qqplot_fwd_GWAS(mygwas,nsteps)
#nsteps=maximum number of forward steps to be displayed
#
#qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'))
#
##############################################################################################################################################
mlmm<-function(Y,X,K,nbchunks,maxsteps,thresh = NULL) {
n<-length(Y)
m<-ncol(X)
stopifnot(ncol(K) == n)
stopifnot(nrow(K) == n)
stopifnot(nrow(X) == n)
stopifnot(nbchunks >= 2)
stopifnot(maxsteps >= 3)
#INTERCEPT
Xo<-rep(1,n)
#K MATRIX NORMALISATION
K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K
rm(K)
#step 0 : NULL MODEL
cof_fwd<-list()
cof_fwd[[1]]<-as.matrix(Xo)
colnames(cof_fwd[[1]])<-'Xo'
mod_fwd<-list()
mod_fwd[[1]]<-emma.REMLE(Y,cof_fwd[[1]],K_norm)
herit_fwd<-list()
herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve)
RSSf<-list()
RSSf[[1]]<-'NA'
RSS_H0<-list()
RSS_H0[[1]]<-'NA'
df1<-1
df2<-list()
df2[[1]]<-'NA'
Ftest<-list()
Ftest[[1]]<-'NA'
pval<-list()
pval[[1]]<-'NA'
fwd_lm<-list()
cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n')
#step 1 : EMMAX
M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n)))
Y_t<-crossprod(M,Y)
cof_fwd_t<-crossprod(M,cof_fwd[[1]])
fwd_lm[[1]]<-summary(lm(Y_t~0+cof_fwd_t))
Res_H0<-fwd_lm[[1]]$residuals
Q_<-qr.Q(qr(cof_fwd_t))
RSS<-list()
for (j in 1:(nbchunks-1)) {
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t)}
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])-1))])
RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t,j)
RSSf[[2]]<-unlist(RSS)
RSS_H0[[2]]<-sum(Res_H0^2)
df2[[2]]<-n-df1-ncol(cof_fwd[[1]])
Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1
pval[[2]]<-pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE)
cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% names(which(RSSf[[2]]==min(RSSf[[2]]))[1])])
colnames(cof_fwd[[2]])<-c(colnames(cof_fwd[[1]]),names(which(RSSf[[2]]==min(RSSf[[2]]))[1]))
mod_fwd[[2]]<-emma.REMLE(Y,cof_fwd[[2]],K_norm)
herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve)
rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n')
#FORWARD
for (i in 3:(maxsteps)) {
if (herit_fwd[[i-2]] < 0.01) break else {
M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n)))
Y_t<-crossprod(M,Y)
cof_fwd_t<-crossprod(M,cof_fwd[[i-1]])
fwd_lm[[i-1]]<-summary(lm(Y_t~0+cof_fwd_t))
Res_H0<-fwd_lm[[i-1]]$residuals
Q_ <- qr.Q(qr(cof_fwd_t))
RSS<-list()
for (j in 1:(nbchunks-1)) {
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t)}
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])-1))])
RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t,j)
RSSf[[i]]<-unlist(RSS)
RSS_H0[[i]]<-sum(Res_H0^2)
df2[[i]]<-n-df1-ncol(cof_fwd[[i-1]])
Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1
pval[[i]]<-pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE)
cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% names(which(RSSf[[i]]==min(RSSf[[i]]))[1])])
colnames(cof_fwd[[i]])<-c(colnames(cof_fwd[[i-1]]),names(which(RSSf[[i]]==min(RSSf[[i]]))[1]))
mod_fwd[[i]]<-emma.REMLE(Y,cof_fwd[[i]],K_norm)
herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve)
rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)}
cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')}
rm(i)
##gls at last forward step
M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n)))
Y_t<-crossprod(M,Y)
cof_fwd_t<-crossprod(M,cof_fwd[[length(mod_fwd)]])
fwd_lm[[length(mod_fwd)]]<-summary(lm(Y_t~0+cof_fwd_t))
Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals
Q_ <- qr.Q(qr(cof_fwd_t))
RSS<-list()
for (j in 1:(nbchunks-1)) {
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t)}
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])-1))])
RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t,j)
RSSf[[length(mod_fwd)+1]]<-unlist(RSS)
RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2)
df2[[length(mod_fwd)+1]]<-n-df1-ncol(cof_fwd[[length(mod_fwd)]])
Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1
pval[[length(mod_fwd)+1]]<-pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE)
rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
##get max pval at each forward step
max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm))
max_pval_fwd[1]<-0
for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[2:i,4])}
rm(i)
##get the number of parameters & Loglikelihood from ML at each step
mod_fwd_LL<-list()
mod_fwd_LL[[1]]<-list(nfixed=ncol(cof_fwd[[1]]),LL=emma.MLE(Y,cof_fwd[[1]],K_norm)$ML)
for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cof_fwd[[i]]),LL=emma.MLE(Y,cof_fwd[[i]],K_norm)$ML)}
rm(i)
cat('backward analysis','\n')
##BACKWARD (1st step == last fwd step)
dropcof_bwd<-list()
cof_bwd<-list()
mod_bwd <- list()
bwd_lm<-list()
herit_bwd<-list()
dropcof_bwd[[1]]<-'NA'
cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]])
colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]
mod_bwd[[1]]<-emma.REMLE(Y,cof_bwd[[1]],K_norm)
herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve)
M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n)))
Y_t<-crossprod(M,Y)
cof_bwd_t<-crossprod(M,cof_bwd[[1]])
bwd_lm[[1]]<-summary(lm(Y_t~0+cof_bwd_t))
rm(M,Y_t,cof_bwd_t)
for (i in 2:length(mod_fwd)) {
dropcof_bwd[[i]]<-(colnames(cof_bwd[[i-1]])[2:ncol(cof_bwd[[i-1]])])[which(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])))]
cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]])
colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]
mod_bwd[[i]]<-emma.REMLE(Y,cof_bwd[[i]],K_norm)
herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve)
M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n)))
Y_t<-crossprod(M,Y)
cof_bwd_t<-crossprod(M,cof_bwd[[i]])
bwd_lm[[i]]<-summary(lm(Y_t~0+cof_bwd_t))
rm(M,Y_t,cof_bwd_t)}
rm(i)
##get max pval at each backward step
max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm))
for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[2:(length(bwd_lm)+1-i),4])}
max_pval_bwd[length(bwd_lm)]<-0
##get the number of parameters & Loglikelihood from ML at each step
mod_bwd_LL<-list()
mod_bwd_LL[[1]]<-list(nfixed=ncol(cof_bwd[[1]]),LL=emma.MLE(Y,cof_bwd[[1]],K_norm)$ML)
for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cof_bwd[[i]]),LL=emma.MLE(Y,cof_bwd[[i]],K_norm)$ML)}
rm(i)
cat('creating output','\n')
##Forward Table: Fwd + Bwd Tables
#Compute parameters for model criteria
BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)}
extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)}
fwd_table<-data.frame(step=ncol(cof_fwd[[1]])-1,step_=paste('fwd',ncol(cof_fwd[[1]])-1,sep=''),cof='NA',ncof=ncol(cof_fwd[[1]])-1,h2=herit_fwd[[1]]
,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]]))
for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table,
data.frame(step=ncol(cof_fwd[[i]])-1,step_=paste('fwd',ncol(cof_fwd[[i]])-1,sep=''),cof=paste('+',colnames(cof_fwd[[i]])[i],sep=''),ncof=ncol(cof_fwd[[i]])-1,h2=herit_fwd[[i]]
,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))}
rm(i)
bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]])-1,h2=herit_bwd[[1]]
,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]]))
for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table,
data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]])-1,h2=herit_bwd[[i]]
,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))}
rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd)
fwdbwd_table<-rbind(fwd_table,bwd_table)
#RSS for plot
mod_fwd_RSS<-vector()
mod_fwd_RSS[1]<-sum((Y-cof_fwd[[1]]%*%fwd_lm[[1]]$coef[,1])^2)
for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cof_fwd[[i]]%*%fwd_lm[[i]]$coef[,1])^2)}
mod_bwd_RSS<-vector()
mod_bwd_RSS[1]<-sum((Y-cof_bwd[[1]]%*%bwd_lm[[1]]$coef[,1])^2)
for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cof_bwd[[i]]%*%bwd_lm[[i]]$coef[,1])^2)}
expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/mod_fwd_RSS[1]}),1-sapply(mod_bwd_RSS,function(x){x/mod_bwd_RSS[length(mod_bwd_RSS)]}))
h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS)
unexpl_RSS<-1-expl_RSS-h2_RSS
plot_RSS<-t(apply(cbind(expl_RSS,h2_RSS,unexpl_RSS),1,cumsum))
#GLS pvals at each step
pval_step<-list()
pval_step[[1]]<-list(out=data.frame("SNP"=colnames(X),"pval"=pval[[2]]),"cof"=NA, "coef"=fwd_lm[[1]]$coef)
for (i in 2:(length(mod_fwd))) {pval_step[[i]]<-list(out=rbind(data.frame(SNP=colnames(cof_fwd[[i]])[-1],'pval'=fwd_lm[[i]]$coef[2:i,4]),
data.frame(SNP=colnames(X)[-which(colnames(X) %in% colnames(cof_fwd[[i]]))],'pval'=pval[[i+1]])),"cof"=colnames(cof_fwd[[i]])[-1], "coef"=fwd_lm[[i]]$coef)}
#GLS pvals for best models according to extBIC and mbonf
opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],]
opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],]
if(! is.null(thresh)){
opt_thresh<-(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof))[1],]
}
bestmodel_pvals<-function(model) {if(substr(model$step_,start=0,stop=3)=='fwd') {
pval_step[[as.integer(substring(model$step_,first=4))+1]]} else if (substr(model$step_,start=0,stop=3)=='bwd') {
cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]]
mixedmod<-emma.REMLE(Y,cof,K_norm)
M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n)))
Y_t<-crossprod(M,Y)
cof_t<-crossprod(M,cof)
GLS_lm<-summary(lm(Y_t~0+cof_t))
Res_H0<-GLS_lm$residuals
Q_ <- qr.Q(qr(cof_t))
RSS<-list()
for (j in 1:(nbchunks-1)) {
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t)}
X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof)-1))])
RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
rm(X_t,j)
RSSf<-unlist(RSS)
RSS_H0<-sum(Res_H0^2)
df2<-n-df1-ncol(cof)
Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1
pval<-pf(Ftest,df1,df2,lower.tail=FALSE)
list('out'=rbind(data.frame(SNP=colnames(cof)[-1],'pval'=GLS_lm$coef[2:(ncol(cof)),4]),
data.frame('SNP'=colnames(X)[-which(colnames(X) %in% colnames(cof))],'pval'=pval)),
'cof'=colnames(cof)[-1],
'coef'=GLS_lm$coef)} else {cat('error \n')}}
opt_extBIC_out<-bestmodel_pvals(opt_extBIC)
opt_mbonf_out<-bestmodel_pvals(opt_mbonf)
if(! is.null(thresh)){
opt_thresh_out<-bestmodel_pvals(opt_thresh)
}
output <- list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out)
if(! is.null(thresh)){
output$thresh <- -log10(thresh)
output$opt_thresh <- opt_thresh_out
}
return(output)
}