Skip to content

AWQ does not actually Quant, outputs slightly bigger size file. - CoHere Model #1566

Closed
@phaelon74

Description

@phaelon74

Describe the bug
Using llm_compressor, successfully calling all libraries, and quantization finishing successfully, and yet the end file/s are even bigger than the input. Either:

  1. It is failing to Quant the layers OR
  2. It's failing to discard the original models weights when saving.

Expected behavior
The output directory is a properly 4bit quanted AWQ

Environment
Include all relevant environment information:

  1. OS [e.g. Ubuntu 20.04]: Ubuntu 20.04
  2. Python version [e.g. 3.7]:3.10.12
  3. LLM Compressor version or commit hash [e.g. 0.1.0, f7245c8]: 0.5.1
  4. ML framework version(s) [e.g. torch 2.3.1]: 2.5.1
  5. Other Python package versions [e.g. vLLM, compressed-tensors, numpy, ONNX]:
  6. Other relevant environment information [e.g. hardware, CUDA version]: CUDA 12.4

To Reproduce
I run my script that calls llm_compressor and does the quantization

Errors
No errors, the quantization finishes successfully

Additional context
Script here:

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

from llmcompressor import oneshot
from llmcompressor.modifiers.awq import AWQModifier

# Select model and load it.
MODEL_ID = "./models/CohereLabs/c4ai-command-r7b-12-2024/"

model = AutoModelForCausalLM.from_pretrained(MODEL_ID,  device_map="auto", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, device_map="auto", trust_remote_code=True)

# Select calibration dataset.
DATASET_ID = "mit-han-lab/pile-val-backup"
DATASET_SPLIT = "validation"

# Select number of samples. 256 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 512

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)


def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            [{"role": "user", "content": example["text"]}],
            tokenize=False,
        )
    }


ds = ds.map(preprocess)


# Tokenize inputs.
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )


# Configure the quantization algorithm to run.
recipe = [
    AWQModifier(
        model_type="custom",
        ignore=["lm_head"],
        mappings=[],
        module_mappers=[
            {
                "pattern": "re:.*.model.layers.\\d+$",
                "smooth_layer": "input_layernorm",
                "balance_layers": [
                    ("self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"),
                    ("mlp.down_proj", "mlp.gate_proj", "mlp.up_proj"),
                ],
                "to_quant_tensors": [
                    "self_attn.q_proj.weight",
                    "self_attn.k_proj.weight",
                    "self_attn.v_proj.weight",
                    "self_attn.o_proj.weight",
                    "mlp.gate_proj.weight",
                    "mlp.up_proj.weight",
                    "mlp.down_proj.weight",
                ],
            }
        ],
    )
]

# Apply algorithms.
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

# Save to disk compressed.
SAVE_DIR = "./quantized/c4ai-command-r7b-4bpw-AWQ"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)

Metadata

Metadata

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions