Closed
Description
Describe the bug
Using llm_compressor, successfully calling all libraries, and quantization finishing successfully, and yet the end file/s are even bigger than the input. Either:
- It is failing to Quant the layers OR
- It's failing to discard the original models weights when saving.
Expected behavior
The output directory is a properly 4bit quanted AWQ
Environment
Include all relevant environment information:
- OS [e.g. Ubuntu 20.04]: Ubuntu 20.04
- Python version [e.g. 3.7]:3.10.12
- LLM Compressor version or commit hash [e.g. 0.1.0,
f7245c8
]: 0.5.1 - ML framework version(s) [e.g. torch 2.3.1]: 2.5.1
- Other Python package versions [e.g. vLLM, compressed-tensors, numpy, ONNX]:
- Other relevant environment information [e.g. hardware, CUDA version]: CUDA 12.4
To Reproduce
I run my script that calls llm_compressor and does the quantization
Errors
No errors, the quantization finishes successfully
Additional context
Script here:
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.awq import AWQModifier
# Select model and load it.
MODEL_ID = "./models/CohereLabs/c4ai-command-r7b-12-2024/"
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, device_map="auto", trust_remote_code=True)
# Select calibration dataset.
DATASET_ID = "mit-han-lab/pile-val-backup"
DATASET_SPLIT = "validation"
# Select number of samples. 256 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 512
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
[{"role": "user", "content": example["text"]}],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
# Configure the quantization algorithm to run.
recipe = [
AWQModifier(
model_type="custom",
ignore=["lm_head"],
mappings=[],
module_mappers=[
{
"pattern": "re:.*.model.layers.\\d+$",
"smooth_layer": "input_layernorm",
"balance_layers": [
("self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"),
("mlp.down_proj", "mlp.gate_proj", "mlp.up_proj"),
],
"to_quant_tensors": [
"self_attn.q_proj.weight",
"self_attn.k_proj.weight",
"self_attn.v_proj.weight",
"self_attn.o_proj.weight",
"mlp.gate_proj.weight",
"mlp.up_proj.weight",
"mlp.down_proj.weight",
],
}
],
)
]
# Apply algorithms.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")
# Save to disk compressed.
SAVE_DIR = "./quantized/c4ai-command-r7b-4bpw-AWQ"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)