-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssl.h
228 lines (197 loc) · 8.52 KB
/
ssl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/* Copyright 2006 Vikas Sindhwani ([email protected])
Modified 2014 Phong Vo ([email protected], [email protected])
SVM-lin: Fast SVM Solvers for Supervised and Semi-supervised Learning
This file is part of SVM-lin.
SVM-lin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
SVM-lin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with SVM-lin (see gpl.txt); if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _svmlin_H
#define _svmlin_H
#include <vector>
#include <ctime>
using namespace std;
/* OPTIMIZATION CONSTANTS */
#define CGITERMAX 10000 /* maximum number of CGLS iterations */
#define SMALL_CGITERMAX 10 /* for heuristic 1 in reference [2] */
#define EPSILON 1e-6 /* most tolerances are set to this value */
#define BIG_EPSILON 0.01 /* for heuristic 2 in reference [2] */
#define RELATIVE_STOP_EPS 1e-9 /* for L2-SVM-MFN relative stopping criterion */
#define MFNITERMAX 50 /* maximum number of MFN iterations */
#define TSVM_ANNEALING_RATE 1.5 /* rate at which lambda_u is increased in TSVM */
#define TSVM_LAMBDA_SMALL 1e-5 /* lambda_u starts from this value */
#define DA_ANNEALING_RATE 1.5 /* annealing rate for DA */
#define DA_INIT_TEMP 10 /* initial temperature relative to lambda_u */
#define DA_INNER_ITERMAX 100 /* maximum fixed temperature iterations for DA */
#define DA_OUTER_ITERMAX 30 /* maximum number of outer loops for DA */
#define VERBOSE_CGLS 0
/* Data: Input examples are stored in sparse (Compressed Row Storage) format */
extern "C" struct data
{
int m; /* number of examples */
int l; /* number of labeled examples */
int u; /* number of unlabeled examples l+u = m */
int n; /* number of features */
int nz; /* number of non-zeros */
double *val; /* data values (nz elements) [CRS format] */
int *rowptr; /* n+1 vector [CRS format] */
int *colind; /* nz elements [CRS format] */
double *Y; /* labels */
double *C; /* cost associated with each example */
};
extern "C" struct vector_double /* defines a vector of doubles */
{
int d; /* number of elements */
double *vec; /* ptr to vector elements*/
};
extern "C" struct vector_int /* defines a vector of ints for index subsets */
{
int d; /* number of elements */
int *vec; /* ptr to vector elements */
};
enum { RLS, SVM, TSVM, DA_SVM }; /* currently implemented algorithms */
extern "C" struct options
{
/* user options */
int algo; /* 1 to 4 for RLS,SVM,TSVM,DASVM */
double lambda_l; /* regularization parameter */
double lambda_u; /* regularization parameter over unlabeled examples */
int S; /* maximum number of TSVM switches per fixed-weight label optimization */
double R; /* expected fraction of unlabeled examples in positive class */
double Cp; /* cost for positive examples */
double Cn; /* cost for negative examples */
/* internal optimization options */
double epsilon; /* all tolerances */
int cgitermax; /* max iterations for CGLS */
int mfnitermax; /* max iterations for L2_SVM_MFN */
};
class timer { /* to output run time */
protected:
double start, finish;
public:
vector<double> times;
void record() {
times.push_back(time());
}
void reset_vectors() {
times.erase(times.begin(), times.end());
}
void restart() { start = clock(); }
void stop() { finish = clock(); }
double time() const { return ((double)(finish - start))/CLOCKS_PER_SEC; }
};
// struct Delta
// {
// double delta;
// int index;
// int s;
// };
// Delta* create_Delta()
// {
// delta = 0.0;
// index = 0;
// s = 0;
// }
class Delta { /* used in line search */
public:
Delta() {delta=0.0; index=0;s=0;};
double delta;
int index;
int s;
};
inline bool operator<(const Delta& a , const Delta& b) { return (a.delta < b.delta);};
//extern "C" void init_data(struct data *Data, )
extern "C" void init_vec_double(struct vector_double *A, int k, double a);
/* initializes a vector_double to be of length k, all elements set to a */
extern "C" void init_vec_int(struct vector_int *A, int k);
/* initializes a vector_int to be of length k, elements set to 1,2..k. */
void SetData(struct data *Data, int m,int n, int l,int u, int nz,
double *VAL, int *R, int *C, double *Y, double *COSTS); /* sets data fields */
void GetLabeledData(struct data *Data_Labeled, const struct data *Data);
/* extracts labeled data from Data and copies it into Data_Labeled */
void Write(const char *file_name, const struct vector_double *somevector);
/* writes a vector into filename, one element per line */
extern "C" void clear_data(struct data *a); /* deletes a */
extern "C" void clear_vec_double(struct vector_double *a); /* deletes a */
extern "C" void clear_vec_int(struct vector_int *a); /* deletes a */
double norm_square(const vector_double *A); /* returns squared length of A */
/* ssl_train: takes data, options, uninitialized weight and output
vector_doubles, routes it to the algorithm */
/* the learnt weight vector and the outputs it gives on the data matrix are saved */
extern "C" void ssl_train(struct data *Data,
struct options *Options,
struct vector_double *W, /* weight vector */
struct vector_double *O,
int verbose); /* output vector */
/* Main svmlin Subroutines */
/*ssl_predict: reads test inputs from input_file_name, a weight vector, and an
uninitialized outputs vector. Performs */
extern "C" void ssl_predict(char *inputs_file_name, const struct vector_double *Weights,
struct vector_double *Outputs);
extern "C" void ssl_predict_online(struct data *Data, const struct vector_double *Weights,
struct vector_double *Outputs);
/* ssl_evaluate: if test labels are given in the vector True, and predictions in vector Output,
this code prints out various performance statistics. Currently only accuracy. */
extern "C" double ssl_evaluate(struct vector_double *Outputs,struct vector_double *True, int verbose);
/* svmlin algorithms and their subroutines */
/* Conjugate Gradient for Sparse Linear Least Squares Problems */
/* Solves: min_w 0.5*Options->lamda*w'*w + 0.5*sum_{i in Subset} Data->C[i] (Y[i]- w' x_i)^2 */
/* over a subset of examples x_i specified by vector_int Subset */
int CGLS(const struct data *Data,
const struct options *Options,
const struct vector_int *Subset,
struct vector_double *Weights,
struct vector_double *Outputs,
int verbose);
/* Linear Modified Finite Newton L2-SVM*/
/* Solves: min_w 0.5*Options->lamda*w'*w + 0.5*sum_i Data->C[i] max(0,1 - Y[i] w' x_i)^2 */
int L2_SVM_MFN(const struct data *Data,
struct options *Options,
struct vector_double *Weights,
struct vector_double *Outputs,
int ini,
int verbose); /* use ini=0 if no good starting guess for Weights, else 1 */
double line_search(double *w,
double *w_bar,
double lambda,
double *o,
double *o_bar,
double *Y,
double *C,
int d,
int l);
/* Transductive L2-SVM */
/* Solves : min_(w, Y[i],i in UNlabeled) 0.5*Options->lamda*w'*w + 0.5*(1/Data->l)*sum_{i in labeled} max(0,1 - Y[i] w' x_i)^2 + 0.5*(Options->lambda_u/Data->u)*sum_{i in UNlabeled} max(0,1 - Y[i] w' x_i)^2
subject to: (1/Data->u)*sum_{i in UNlabeled} max(0,Y[i]) = Options->R */
int TSVM_MFN(const struct data *Data,
struct options *Options,
struct vector_double *Weights,
struct vector_double *Outputs,
int verbose);
int switch_labels(double* Y, double* o, int* JU, int u, int S);
/* Deterministic Annealing*/
int DA_S3VM(struct data *Data,
struct options *Options,
struct vector_double *Weights,
struct vector_double *Outputs,
int verbose);
void optimize_p(const double* g, int u, double T, double r, double*p, int verbose);
int optimize_w(const struct data *Data,
const double *p,
struct options *Options,
struct vector_double *Weights,
struct vector_double *Outputs,
int ini,
int verbose);
double transductive_cost(double normWeights,double *Y, double *Outputs, int m, double lambda,double lambda_u);
double entropy(const double *p, int u);
double KL(const double *p, const double *q, int u); /* KL-divergence */
#endif