-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinsurance_qa_embeddings.py
56 lines (39 loc) · 1.54 KB
/
insurance_qa_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from __future__ import print_function
import os
import sys
import random
import pickle
from gensim.models import Word2Vec
from keras_models import *
random.seed(42)
def load(path, name):
return pickle.load(open(os.path.join(path, name), 'rb'))
def revert(vocab, indices):
return [vocab.get(i, 'X') for i in indices]
if __name__ == '__main__':
try:
data_path = os.environ['INSURANCE_QA']
except KeyError:
print("INSURANCE_QA is not set. Set it to your clone of https://github.com/codekansas/insurance_qa_python")
sys.exit(1)
size = 1000
assert os.path.exists('models/embedding_%d_dim.h5' % size)
vocab = load(data_path, 'vocabulary')
sentences = list()
answers = load(data_path, 'answers')
for id, txt in answers.items():
sentences.append(revert(vocab, txt))
for q in load(data_path, 'train'):
sentences.append(revert(vocab, q['question']))
print('Training Word2Vec model...')
model = Word2Vec(sentences, size=size, min_count=5, window=5, sg=1, iter=25)
weights = model.syn0
d = dict([(k, v.index) for k, v in model.vocab.items()])
# this is the stored weights of an equivalent embedding layer
# there is some commented code in insurance_qa_eval.py for generating this
emb = np.load('models/embedding_%d_dim.h5' % size)
# swap the word2vec weights with the embedded weights
for i, w in vocab.items():
if w not in d: continue
emb[i, :] = weights[d[w], :]
np.save(open('models/word2vec_%d_dim.h5' % size, 'wb'), emb)