-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreProcessData.py
156 lines (108 loc) · 3.66 KB
/
reProcessData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding: utf-8
import pickle
import xml.etree.ElementTree as et
import sys
from pycorenlp import StanfordCoreNLP
import codecs
import unicodedata
sys.stdout = codecs.getwriter('utf-8')(sys.stdout)
nlp = StanfordCoreNLP('http://localhost:9000')
dataPath = u'./'
datas = {}
answers = []
lemmaSet = set()
lemmaDic = {}
revLemmaDic = {}
def lparse(input):
output = nlp.annotate(input, properties={
'annotators': 'tokenize,ssplit,pos',
'outputFormat': 'xml',
'timeout': 30000})
fixed = []
for o in output:
if all(ord(c) < 128 for c in o):
fixed.append(o)
return("".join(fixed))
def strip_accents(text):
text = text.decode('utf-8')
return str(''.join(char for char in
unicodedata.normalize('NFKD', text)
if unicodedata.category(char) != 'Mn'))
def nlp_process(file_path):
result = []
xml = et.parse(file_path)
tree = xml.getroot()
for QApair in tree.findall('QApairs'):
temp = {}
if QApair.find('positive') is None:
continue
for value in ['question', 'positive', 'negative']:
sents = []
for document in QApair.findall(value):
sent = []
raw_sent = str(document.text).strip().splitlines()[0]
parse_result = et.fromstring(lparse(strip_accents(raw_sent)))
tokens = parse_result.findall('.//token')
for token in tokens:
lemma = token.find(".//word").text.lower()
sent.append(lemma)
lemmaSet.add(lemma)
sents.append(sent)
temp[value] = sents
result.append(temp)
return result
def convert_sent(sent):
new_sent = []
for term in sent:
new_sent.append(revLemmaDic[term])
return new_sent
def process(nlped_data):
num = 0
result = []
for document in nlped_data:
num += 1
temp = {}
temp['question_id'] = num
temp['question'] = convert_sent(document['question'][0])
if len(document['question']) > 1:
print 'question size is 2!'
print document['question']
sys.exit()
good = []
bad = []
for value in ['positive', 'negative']:
for sent in document[value]:
ans = {}
ans['id'] = len(answers) + 1
ans['text'] = convert_sent(sent)
answers.append(ans)
if value == 'positive':
good.append(ans['id'])
else:
bad.append(ans['id'])
temp['good'] = good
temp['bad'] = bad
result.append(temp)
return result
if __name__ == '__main__':
raws = {}
raws['train'] = dataPath + 'train2393.cleanup.xml'
raws['test'] = dataPath + 'test-less-than-40.manual-edit.xml'
raws['dev'] = dataPath + 'dev-less-than-40.manual-edit.xml'
nlped = {}
for data_type in raws.keys():
nlped[data_type] = nlp_process(raws[data_type])
lem_num = 0
for term in lemmaSet:
lem_num += 1
lemmaDic[lem_num] = term
revLemmaDic[term] = lem_num
print '# of all voca : ' + str(len(lemmaDic.keys()))
pickle.dump(lemmaDic, open('voca', 'w'))
pickle.dump(revLemmaDic, open('revVoca', 'w'))
for data_type in nlped.keys():
dump = process(nlped[data_type])
print '# of all ' + data_type + ' : ' + str(len(dump))
pickle.dump(dump, open(data_type, 'w'))
print '# of all answers : ' + str(len(answers))
pickle.dump(answers, open('answers', 'w'))