-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_med_data.py
208 lines (154 loc) · 5.6 KB
/
test_med_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import medmnist
from medmnist import INFO, Evaluator
import os
data_flag = 'pathmnist'
# data_flag = 'breastmnist'
download = True
NUM_EPOCHS = 3
BATCH_SIZE = 128
lr = 0.001
info = INFO[data_flag]
task = info['task']
n_channels = info['n_channels']
n_classes = len(info['label'])
DataClass = getattr(medmnist, info['python_class'])
print(type(DataClass))
# preprocessing
data_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[.5], std=[.5])
])
# load the data
# train_dataset = DataClass(split='train', transform=data_transform, download=download)
test_dataset = DataClass(split='test', transform=data_transform, download=download, size=224, mmap_mode='r')
# pil_dataset = DataClass(split='train', download=download)
# help(DataClass)
# Directory where the images will be saved
save_dir = 'filtered_images'
os.makedirs(save_dir, exist_ok=True)
labels_to_save = [4,7]
l4 = 0
l7 = 0
# Iterate through the dataset
for idx, (image, label) in enumerate(test_dataset):
# Check if the label is either 2 or 4
if label in labels_to_save:
# Convert tensor to a PIL image
pil_image = transforms.ToPILImage()(image)
# Define the path to save the image
image_path = os.path.join(save_dir, f'image_{idx}_label_{label.item()}.png')
# Save the image
pil_image.save(image_path)
l4 += 1
l7 += 1
print(f"Image {idx} with label {label.item()} saved to {image_path}")
if l4 == 20 and l7 == 20:
break
print(f"Images with labels 2 and 4 have been saved to {save_dir}")
# # encapsulate data into dataloader form
# train_loader = data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
# train_loader_at_eval = data.DataLoader(dataset=train_dataset, batch_size=2*BATCH_SIZE, shuffle=False)
# test_loader = data.DataLoader(dataset=test_dataset, batch_size=2*BATCH_SIZE, shuffle=False)
# print(train_dataset)
# print("===================")
# print(test_dataset)
# # define a simple CNN model
# class Net(nn.Module):
# def __init__(self, in_channels, num_classes):
# super(Net, self).__init__()
# self.layer1 = nn.Sequential(
# nn.Conv2d(in_channels, 16, kernel_size=3),
# nn.BatchNorm2d(16),
# nn.ReLU())
# self.layer2 = nn.Sequential(
# nn.Conv2d(16, 16, kernel_size=3),
# nn.BatchNorm2d(16),
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=2, stride=2))
# self.layer3 = nn.Sequential(
# nn.Conv2d(16, 64, kernel_size=3),
# nn.BatchNorm2d(64),
# nn.ReLU())
# self.layer4 = nn.Sequential(
# nn.Conv2d(64, 64, kernel_size=3),
# nn.BatchNorm2d(64),
# nn.ReLU())
# self.layer5 = nn.Sequential(
# nn.Conv2d(64, 64, kernel_size=3, padding=1),
# nn.BatchNorm2d(64),
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=2, stride=2))
# self.fc = nn.Sequential(
# nn.Linear(64 * 4 * 4, 128),
# nn.ReLU(),
# nn.Linear(128, 128),
# nn.ReLU(),
# nn.Linear(128, num_classes))
# def forward(self, x):
# x = self.layer1(x)
# x = self.layer2(x)
# x = self.layer3(x)
# x = self.layer4(x)
# x = self.layer5(x)
# x = x.view(x.size(0), -1)
# x = self.fc(x)
# return x
# model = Net(in_channels=n_channels, num_classes=n_classes)
# # define loss function and optimizer
# if task == "multi-label, binary-class":
# criterion = nn.BCEWithLogitsLoss()
# else:
# criterion = nn.CrossEntropyLoss()
# optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
# # train
# for epoch in range(NUM_EPOCHS):
# train_correct = 0
# train_total = 0
# test_correct = 0
# test_total = 0
# model.train()
# for inputs, targets in tqdm(train_loader):
# # forward + backward + optimize
# optimizer.zero_grad()
# outputs = model(inputs)
# if task == 'multi-label, binary-class':
# targets = targets.to(torch.float32)
# loss = criterion(outputs, targets)
# else:
# targets = targets.squeeze().long()
# loss = criterion(outputs, targets)
# loss.backward()
# optimizer.step()
# # evaluation
# def test(split):
# model.eval()
# y_true = torch.tensor([])
# y_score = torch.tensor([])
# data_loader = train_loader_at_eval if split == 'train' else test_loader
# with torch.no_grad():
# for inputs, targets in data_loader:
# outputs = model(inputs)
# if task == 'multi-label, binary-class':
# targets = targets.to(torch.float32)
# outputs = outputs.softmax(dim=-1)
# else:
# targets = targets.squeeze().long()
# outputs = outputs.softmax(dim=-1)
# targets = targets.float().resize_(len(targets), 1)
# y_true = torch.cat((y_true, targets), 0)
# y_score = torch.cat((y_score, outputs), 0)
# y_true = y_true.numpy()
# y_score = y_score.detach().numpy()
# evaluator = Evaluator(data_flag, split)
# metrics = evaluator.evaluate(y_score)
# print('%s auc: %.3f acc:%.3f' % (split, *metrics))
# print('==> Evaluating ...')
# test('train')
# test('test')