-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNavajo Invasiveness.Rmd
104 lines (69 loc) · 2.62 KB
/
Navajo Invasiveness.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
title: "Navajo Invasiveness"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
# jagsExists = url.exists("http://sourceforge.net/projects/mcmc-jags/files/latest/download")
# # Regular HTTP
# if(jagsExists) {
# txt = getURL("http://sourceforge.net/projects/mcmc-jags/files/latest/download")}
#### Use jags package ####
#install.packages("rjags")
library(rjags)
library (RCurl)
library(boot)
library(reshape2)
library(RColorBrewer)
```
Set up data
```{r}
#### Enter study specific data on number of children included in the sample and number of positive samples ####
#### Data (select as appropriate)####
carripddat <- read.csv("./Data/master.input.data.blurred.csv")
carripddat<-carripddat[carripddat$agegrp==1,] #RESTRICT TO KIDS!
names(carripddat )
# 1.a. <5y olds vs. adults #
st.per.label<-paste(carripddat$st, carripddat$period)
st.per.label<-paste(carripddat$st, carripddat$period)
#Create vector that contain number of carriers, number of swabs in each time period, number of IPD cases, and the offset (e.g. popsize)
ncarr <-carripddat [,'N_carr_blurred']
nswab<-carripddat [,'N_swabs']
nipd<-carripddat [,'IPD_blurred']
offset<-carripddat [,'pop_offset_IPD']
st.lab<-carripddat [,'st']
st.index<-as.numeric(as.factor(st.lab))
unique.st.lab<- unique(cbind.data.frame(st.index,st.lab)) #for labeling the output
unique.st.lab<-unique.st.lab[order(unique.st.lab$st.index),]
```
Read in JAGS model
```{r}
source('./R/invasiveness estimates from SINGLE STAGE MODEL shrinkage v2 notes.R')
```
#Call model
```{r}
#### Code to run JAGS###
jdat <- list(N_st_pers=length(ncarr), ncarr=ncarr, nipd=nipd,offset=offset, nswab=nswab, st.index=st.index, N_sts=nrow(unique.st.lab))
#inits <- list(b0=0,b1=1)
jmod <- jags.model(textConnection(jcode), data=jdat, n.chains=2, n.adapt=1000)
update(jmod,5000)
jpos <- coda.samples(jmod, c("log.true.inv.st","log.ave.inv",'logit.true.prev'), n.iter=20000, thin=5)
```
Plot posteriors
```{r}
#plot(jpos, ask=TRUE)
#save(jpos,jpos,file="./mcmcposterior_single_stage")
```
#### Retrieve results ####
```{r}
summary.mcmc <- summary(jpos)
summary.stats<-as.data.frame(summary.mcmc[1])
mean.mcmc=summary.stats$statistics.Mean[grep("log.true.inv.st", row.names(summary.stats))]
prec.mcmc=1/(summary.stats$statistics.SD[grep("log.true.inv.st", row.names(summary.stats))]**2)
summary.table.posteriors<-cbind.data.frame(unique.st.lab,mean.mcmc,prec.mcmc)
col_headings <- c('st.index','st','log.inv.age1','log.inv.prec.age1')
names(summary.table.posteriors)<-col_headings
write.csv(summary.table.posteriors,file="./Results/mcmc_invasive_single_stage.csv")
```