-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleetcode221.cpp
67 lines (63 loc) · 1.87 KB
/
leetcode221.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*************************************************
Author: wenhaofang
Date: 2023-03-23
Description: leetcode221 - Maximal Square
*************************************************/
#include <bits/stdc++.h>
using namespace std;
/**
* 方法一:动态规划
*
* 理论时间复杂度:O(mn),其中 m、n 分别为数组行数和列数
* 理论空间复杂度:O(mn),其中 m、n 分别为数组行数和列数
*/
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size();
int n = matrix[0].size();
// dp[i][j] 表示从 (0, 0) 到 (i, j) 的矩阵中只包含 1 的最大正方形
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) {
if (matrix[i][0] == '1') {
dp[i][0] = 1;
}
}
for (int j = 0; j < n; j++) {
if (matrix[0][j] == '1') {
dp[0][j] = 1;
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][j] != '1') {
dp[i][j] = 0;
}
else {
dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
int ans = INT_MIN;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
ans = max(ans, dp[i][j]);
}
}
return ans * ans;
}
};
/**
* 测试
*/
int main() {
Solution* solution = new Solution();
vector<vector<char>> matrix = {
{'1', '0', '1', '0', '0'},
{'1', '0', '1', '1', '1'},
{'1', '1', '1', '1', '1'},
{'1', '0', '0', '1', '0'}
};
int ans = solution -> maximalSquare(matrix);
cout << ans << endl;
}