-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtodo.tasks
41 lines (36 loc) · 1.74 KB
/
todo.tasks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
TODO:
☐ Borrow global state so that you never can forget to set it. @high
☐ Make `B.jit` work with Torch and TF generators to ensure uniform patterns. @high
☐ Check optimality of `move_to_device`. @low
☐ Reuse Plum's error message.
Bugs:
☐ Is broadcasting of shapes in `B.randgamma` safe with the JIT? @high
Functions:
☐ eigvals
☐ norm
☐ dot
☐ cos_sim
___________________
Archive:
✓ Allow to index with `int32` for Torch @high @done (22-04-28 15:50) @project(TODO)
✓ Add test like this: @high @done (22-04-28 15:50) @project(TODO)
import lab as B
import tensorflow as tf
import lab.tensorflow
import jax.numpy as jnp
import lab.jax
import torch
import lab.torch
for dtype in [np.float32, jnp.float32, tf.float32, torch.float64]
✓ Let `cholesky_solve` for PyTorch use `torch.cholesky_solve` once the derivative is implemented. @done (22-03-30 19:33) @project(Future)
✓ Jax @done (22-03-30 19:32) @project(TODO / Support)
✓ Design with AutoGrad as well? @done (22-03-30 19:32) @project(TODO / Support)
x Refactor tests to use PyTest: remove raises, fixtures, and parametrisation. @high @cancelled (22-03-30 19:32) @project(Functions)
x Refactor scan once TF2.0 is integrated. @cancelled (19-07-07 18:53) @project(TODO)
✓ Port bvn_cdf. @done (19-05-16 18:06) @project(TODO)
✓ Check Python 2 and Python 3 compatibility. @done (19-05-16 18:06) @project(TODO)
✓ Documentation. @critical @done (19-05-02 13:29) @project(TODO)
✓ Add support for AutoGrad. @done (19-05-01 13:25) @project(TODO)
x = B.range(dtype, 10) @project(TODO)
perm = B.randperm(B.dtype_int(dtype), 10)
B.take(x, B.cast(B.promote_dtypes(B.dtype_int(dtype), int), perm))