forked from OptMLGroup/DeepBeerInventory-RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clBeergame.py
462 lines (390 loc) · 21.9 KB
/
clBeergame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import time
from time import gmtime, strftime
import numpy as np
import random
from random import randint
from BGAgent import Agent
from plotting import plotting, savePlot, plotBaseStock
import matplotlib.pyplot as plt
import os
from matplotlib import rc
rc('text', usetex=True)
import tensorflow as tf
class clBeerGame(object):
def __init__(self, config):
self.config = config
self.curGame = 0 # The number associated with the current game (counter of the game)
self.curTime = 0
self.totIterPlayed = 0 # total iterations of the game, played so far in this and previous games
self.players = self.createAgent() # create the agents
self.T = 0
self.demand = []
self.playType = [] # "train" or "test"
self.ifOptimalSolExist = self.config.ifOptimalSolExist
self.getOptimalSol()
self.totRew = 0 # it is reward of all players obtained for the current player.
self.resultTest = []
self.runnerMidlResults = [] # stores the results to use in runner comparisons
self.runnerFinlResults = [] # stores the results to use in runner comparisons
self.middleTestResult = [] # stores the whole middle results of bs, Strm, and random to avoid doing same tests multiple of times.
self.runNumber = 0 # the runNumber which is used when use runner
self.strNum = 0 # the runNumber which is used when use runner
# createAgent : Create agent objects (agentNum,IL,OO,c_h,c_p,type,config)
def createAgent(self):
agentTypes = self.config.agentTypes
return [Agent(i,self.config.ILInit[i], self.config.AOInit, self.config.ASInit[i],
self.config.c_h[i], self.config.c_p[i], self.config.eta[i],
agentTypes[i],self.config) for i in range(self.config.NoAgent)]
# planHorizon : Find a random planning horizon
def planHorizon(self):
# TLow: minimum number for the planning horizon # TUp: maximum number for the planning horizon
#output: The planning horizon which is chosen randomly.
return randint(self.config.TLow,self.config.TUp)
# this function resets the game for start of the new game
def resetGame(self, demand, playType):
self.playType = playType #"train" or "test"
self.demand = demand
self.curTime = 0
if playType == "train":
self.curGame += 1
self.totIterPlayed += self.T
self.T = self.planHorizon()
else:
self.T = self.config.Ttest
# reset the required information of player for each episode
for k in range(0,self.config.NoAgent):
self.players[k].resetPlayer(self.T)
# update OO when there are initial IL,AO,AS
self.update_OO()
# correction on cost at time T according to the cost of the other players
def getTotRew(self):
totRew = 0
for i in range(self.config.NoAgent):
# sum all rewards for the agents and make correction
totRew += self.players[i].cumReward
for i in range(self.config.NoAgent):
self.players[i].curReward += self.players[i].eta*(totRew - self.players[i].cumReward) #/(self.T)
# make correction to the rewards in the experience replay for all iterations of current game
def distTotReward(self):
totRew = 0
optRew = 0.1
for i in range(self.config.NoAgent):
# sum all rewards for the agents and make correction
totRew += self.players[i].cumReward
totRew += optRew
for i in range(self.config.NoAgent):
for j in range(self.T):
if self.config.NoAgent>1 and hasattr(self.players[i], 'brain') and (len(self.players[i].brain.replayMemory)>0):
#self.players[i].brain.replayMemory[-1*(j+1)][2] += (np.power(self.config.alpha,j)/(self.config.NoAgent-1))*((totRew - self.players[i].cumReward)/(self.T)) # changes the last T periods in the replayMemory
self.players[i].brain.replayMemory[-1*(j+1)][2] += (self.config.distCoeff/(self.config.NoAgent-1))*((totRew - self.players[i].cumReward)/(self.T)) # changes the last T periods in the replayMemory
def getAction(self, k):
# get action for training run
if self.playType == "train":
if self.players[k].compTypeTrain == "srdqn":
self.players[k].action = np.zeros(self.config.actionListLen)
self.players[k].action = self.players[k].brain.getDNNAction(self.playType)
elif self.players[k].compTypeTrain == "Strm":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt)\
-max(0,round(self.players[k].AO[self.curTime] +\
self.players[k].alpha_b*(self.players[k].IL - self.players[k].a_b) +\
self.players[k].betta_b*(self.players[k].OO - self.players[k].b_b)))))] = 1
elif self.players[k].compTypeTest == "rnd":
self.players[k].action = np.zeros(self.config.actionListLen)
a = np.random.randint(self.config.actionListLen)
self.players[k].action[a] = 1
elif self.players[k].compTypeTrain == "bs":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
if self.config.demandDistribution == 2:
if self.curTime and self.config.use_initial_BS <= 4:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].int_bslBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
# not a valid player is defined.
raise Exception('The player type is not defined or it is not a valid type.!')
# get action for test runs
elif self.playType == "test":
if self.players[k].compTypeTest == "srdqn":
self.players[k].action = np.zeros(self.config.actionListLen)
if self.config.ifPlaySavedData:
self.players[k].action[int(self.loaded_dqn_actions[self.curTime])] = 1
else:
self.players[k].action = self.players[k].brain.getDNNAction(self.playType)
elif self.players[k].compTypeTest == "Strm":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,round(self.players[k].AO[self.curTime] +\
self.players[k].alpha_b*(self.players[k].IL - self.players[k].a_b) +\
self.players[k].betta_b*(self.players[k].OO - self.players[k].b_b)))))] = 1
elif self.players[k].compTypeTest == "rnd":
self.players[k].action = np.zeros(self.config.actionListLen)
a = np.random.randint(self.config.actionListLen)
self.players[k].action[a] = 1
elif self.players[k].compTypeTest == "bs":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
if self.config.demandDistribution == 2:
if self.curTime and self.config.use_initial_BS <= 4:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].int_bslBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
# not a valid player is defined.
raise Exception('The player type is not defined or it is not a valid type.!')
# print(self.curTime, self.players[k].agentNum, "IL", self.players[k].IL, "OO", self.players[k].OO, "Op", self.players[k].bsBaseStock, self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO))
# next action
def next(self):
# get a random leadtime
leadTimeIn = randint(self.config.leadRecItemLow[self.config.NoAgent-1], self.config.leadRecItemUp[self.config.NoAgent-1])
# handle the most upstream recieved shipment
self.players[self.config.NoAgent-1].AS[self.curTime + leadTimeIn] += self.players[self.config.NoAgent-1].actionValue(self.curTime, self.playType)
for k in range(self.config.NoAgent-1,-1,-1): # [3,2,1,0]
# get current IL and Backorder
current_IL = max(0, self.players[k].IL)
current_backorder = max(0, -self.players[k].IL)
# TODO: We have get the AS and AO from the UI and update our AS and AO, so that code update the corresponding variables
# increase IL and decrease OO based on the action, for the next period
self.players[k].recieveItems(self.curTime)
# observe the reward
possible_shipment = min(current_IL + self.players[k].AS[self.curTime], current_backorder + self.players[k].AO[self.curTime])
# plan arrivals of the items to the downstream agent
if self.players[k].agentNum > 0:
leadTimeIn = randint(self.config.leadRecItemLow[k-1], self.config.leadRecItemUp[k-1])
self.players[k-1].AS[self.curTime + leadTimeIn] += possible_shipment
# update IL
self.players[k].IL -= self.players[k].AO[self.curTime]
# observe the reward
self.players[k].getReward()
self.players[k].hist[-1][-2] = self.players[k].curReward
self.players[k].hist2[-1][-2] = self.players[k].curReward
# update next observation
self.players[k].nextObservation = self.players[k].getCurState(self.curTime+1)
if self.config.ifUseTotalReward:
# correction on cost at time T
if self.curTime == self.T:
self.getTotRew()
self.curTime +=1
def handelAction(self):
# get random lead time
leadTime = randint(self.config.leadRecOrderLow[0], self.config.leadRecOrderUp[0])
# set AO
self.players[0].AO[self.curTime] += self.demand[self.curTime]
for k in range(0,self.config.NoAgent):
self.getAction(k)
self.players[k].srdqnBaseStock += [self.players[k].actionValue( \
self.curTime, self.playType) + self.players[k].IL + self.players[k].OO]
# update hist for the plots
self.players[k].hist += [[self.curTime,self.players[k].IL, self.players[k].OO,\
self.players[k].actionValue(self.curTime,self.playType),self.players[k].curReward, self.players[k].srdqnBaseStock[-1]]]
if (self.players[k].compTypeTrain == "srdqn" and self.playType == "train") or (self.players[k].compTypeTest == "srdqn" and self.playType == "test"):
self.players[k].hist2 += [[self.curTime,self.players[k].IL, self.players[k].OO, self.players[k].AO[self.curTime], self.players[k].AS[self.curTime], \
self.players[k].actionValue(self.curTime,self.playType), self.players[k].curReward, \
self.config.actionList[np.argmax(self.players[k].action)]]]
else:
self.players[k].hist2 += [[self.curTime,self.players[k].IL, self.players[k].OO, self.players[k].AO[self.curTime], self.players[k].AS[self.curTime], \
self.players[k].actionValue(self.curTime,self.playType), self.players[k].curReward, 0]]
# updates OO and AO at time t+1
self.players[k].OO += self.players[k].actionValue(self.curTime, self.playType) # open order level update
leadTime = randint(self.config.leadRecOrderLow[k], self.config.leadRecOrderUp[k])
if self.players[k].agentNum < self.config.NoAgent-1:
self.players[k+1].AO[self.curTime + leadTime] += self.players[k].actionValue(self.curTime, self.playType) # open order level update
def playGame(self, demand, playType):
self.resetGame(demand, playType)
# run the game
while self.curTime <= self.T:
self.handelAction()
self.next()
for k in range(0,self.config.NoAgent):
if (self.players[k].compTypeTrain == "srdqn" and playType == "train") or (self.players[k].compTypeTest == "srdqn" and playType == "test"):
# control the learner agent
self.players[k].brain.train(self.players[k].nextObservation,self.players[k].action, \
self.players[k].curReward,self.curTime == self.T,self.playType)
if self.config.ifUsedistTotReward and playType == "train":
self.distTotReward()
return [-1*self.players[i].cumReward for i in range(0,self.config.NoAgent)]
# check the Shang and Song (2003) condition, and if it works, obtains the base stock policy values for each agent
def getOptimalSol(self):
# if self.config.NoAgent !=1:
if self.config.NoAgent !=1 and 1 == 2:
# check the Shang and Song (2003) condition.
for k in range(self.config.NoAgent-1):
if not (self.players[k].c_h == self.players[k+1].c_h and self.players[k+1].c_p == 0):
self.ifOptimalSolExist = False
# if the Shang and Song (2003) condition satisfied, it runs the algorithm
if self.ifOptimalSolExist == True:
calculations = np.zeros((7,self.config.NoAgent))
for k in range(self.config.NoAgent):
# DL_high
calculations[0][k] = ((self.config.leadRecItemLow +self.config.leadRecItemUp + 2)/2 \
+ (self.config.leadRecOrderLow+self.config.leadRecOrderUp + 2)/2)* \
(self.config.demandUp - self.config.demandLow- 1)
if k > 0:
calculations[0][k] += calculations[0][k-1]
# probability_high
nominator_ch = 0
low_denominator_ch = 0
for j in range(k,self.config.NoAgent):
if j < self.config.NoAgent-1:
nominator_ch += self.players[j+1].c_h
low_denominator_ch += self.players[j].c_h
if k == 0:
high_denominator_ch = low_denominator_ch
calculations[2][k] = (self.players[0].c_p + nominator_ch)/(self.players[0].c_p + low_denominator_ch + 0.0)
# probability_low
calculations[3][k] = (self.players[0].c_p + nominator_ch)/(self.players[0].c_p + high_denominator_ch + 0.0)
# S_high
calculations[4] = np.round(np.multiply(calculations[0],calculations[2]))
# S_low
calculations[5] = np.round(np.multiply(calculations[0],calculations[3]))
# S_avg
calculations[6] = np.round(np.mean(calculations[4:6], axis=0))
# S', set the base stock values into each agent.
for k in range(self.config.NoAgent):
if k == 0:
self.players[k].bsBaseStock = calculations[6][k]
else:
self.players[k].bsBaseStock = calculations[6][k] - calculations[6][k-1]
if self.players[k].bsBaseStock < 0:
self.players[k].bsBaseStock = 0
elif self.config.NoAgent ==1:
if self.config.demandDistribution==0:
self.players[0].bsBaseStock = np.ceil(self.config.c_h[0]/(self.config.c_h[0]+self.config.c_p[0]+ 0.0))*((self.config.demandUp-self.config.demandLow-1)/2)*self.config.leadRecItemUp
elif 1 == 1:
f = self.config.f
f_init = self.config.f_init
for k in range(self.config.NoAgent):
self.players[k].bsBaseStock = f[k]
self.players[k].int_bslBaseStock = f_init[k]
def doTestMid(self, demandTs):
if self.config.ifPlaySavedData:
for c,i in enumerate(self.config.agentTypes):
if i == "srdqn":
dnn_agent = c
break
self.resultTest = []
for i in range(self.config.testRepeatMid):
if self.config.ifPlaySavedData:
hist2 = np.load(os.path.join(self.config.model_dir,'DQN-0-player-'+str(dnn_agent)+'-'+str(i)+'.npy'))
self.loaded_dqn_actions = hist2[:,7]
self.doTest(i,demandTs[i])
print("---------------------------------------------------------------------------------------")
resultSummary = np.array(self.resultTest).mean(axis=0).tolist()
result_srdqn= ', '.join(map("{:.2f}".format, resultSummary[0]))
result_rand= ', '.join(map("{:.2f}".format, resultSummary[1]))
result_strm= ', '.join(map("{:.2f}".format, resultSummary[2]))
if self.ifOptimalSolExist:
result_bs= ', '.join(map("{:.2f}".format, resultSummary[3]))
print('SUMMARY; {0:s}; ITER= {1:d}; SRDQN= [{2:s}]; SUM = {3:2.4f}; Rand= [{4:s}]; SUM = {5:2.4f}; STRM= [{6:s}]; SUM = {7:2.4f}; BS= [{8:s}]; SUM = {9:2.4f}'.format(strftime("%Y-%m-%d %H:%M:%S", gmtime()) ,
self.curGame, result_srdqn, sum(resultSummary[0]),
result_rand, sum(resultSummary[1]),
result_strm, sum(resultSummary[2]),
result_bs, sum(resultSummary[3])))
else:
print('SUMMARY; {0:s}; ITER= {1:d}; SRDQN= [{2:s}]; SUM = {3:2.4f}; Rand= [{4:s}]; SUM = {5:2.4f}; STRM= [{6:s}]; SUM = {7:2.4f}'.format(strftime("%Y-%m-%d %H:%M:%S", gmtime()) ,
self.curGame, result_srdqn, sum(resultSummary[0]),
result_rand, sum(resultSummary[1]),
result_strm, sum(resultSummary[2])))
print("=======================================================================================")
def doTest(self, m,demand):
import matplotlib.pyplot as plt
if (self.config.ifSaveFigure) and (self.curGame in range(self.config.saveFigInt[0],self.config.saveFigInt[1])):
plt.figure(self.curGame, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k')
self.demand = demand
# use dnn to get output.
Rsltdnn,plt = self.tester(self.config.agentTypes ,plt, 'b', 'DQN' ,m)
baseStockdata = self.players[0].srdqnBaseStock
# check some condition to avoid doing same test middle again.
if ((self.config.ifSaveFigure) and (self.curGame in range(self.config.saveFigInt[0],self.config.saveFigInt[1]))) \
or (self.curGame >= self.config.maxEpisodesTrain-1) or (len(self.middleTestResult) < self.config.testRepeatMid):
# use random to get output.
RsltRnd ,plt= self.tester(["rnd","rnd","rnd","rnd"], plt,'y21', 'RAND' ,m)
# use formual to get output.
RsltStrm ,plt= self.tester(["Strm","Strm","Strm","Strm"],plt, 'g', 'Strm' ,m)
# use optimal strategy to get output, if it works.
if self.ifOptimalSolExist:
if self.config.agentTypes == ["srdqn", "Strm","Strm","Strm"]:
Rsltbs ,plt= self.tester(["bs","Strm","Strm","Strm"],plt, 'r', 'Strm-BS' ,m)
elif self.config.agentTypes == ["Strm", "srdqn","Strm","Strm"]:
Rsltbs ,plt= self.tester(["Strm","bs","Strm","Strm"],plt, 'r', 'Strm-BS' ,m)
elif self.config.agentTypes == ["Strm", "Strm","srdqn","Strm"]:
Rsltbs ,plt= self.tester(["Strm","Strm","bs","Strm"],plt, 'r', 'Strm-BS' ,m)
elif self.config.agentTypes == ["Strm", "Strm","Strm","srdqn"]:
Rsltbs ,plt= self.tester(["Strm","Strm","Strm","bs"],plt, 'r', 'Strm-BS' ,m)
elif self.config.agentTypes == ["srdqn", "rnd","rnd","rnd"]:
Rsltbs ,plt= self.tester(["bs","rnd","rnd","rnd"],plt, 'r', 'RND-BS' ,m)
elif self.config.agentTypes == ["rnd", "srdqn","rnd","rnd"]:
Rsltbs ,plt= self.tester(["rnd","bs","rnd","rnd"],plt, 'r', 'RND-BS' ,m)
elif self.config.agentTypes == ["rnd", "rnd","srdqn","rnd"]:
Rsltbs ,plt= self.tester(["rnd","rnd","bs","rnd"],plt, 'r', 'RND-BS' ,m)
elif self.config.agentTypes == ["rnd", "rnd","rnd","srdqn"]:
Rsltbs ,plt= self.tester(["rnd","rnd","rnd","bs"],plt, 'r', 'RND-BS' ,m)
else:
Rsltbs ,plt= self.tester(["bs","bs","bs","bs"],plt, 'r', 'BS' ,m)
# hold the results of the optimal solution
self.middleTestResult += [[RsltRnd,RsltStrm,Rsltbs]]
else:
self.middleTestResult += [[RsltRnd,RsltStrm]]
else:
# return the obtained results into their lists
RsltRnd = self.middleTestResult[m][0]
RsltStrm = self.middleTestResult[m][1]
if self.ifOptimalSolExist:
Rsltbs = self.middleTestResult[m][2]
# save the figure
if self.config.ifSaveFigure and (self.curGame in range(self.config.saveFigInt[0],self.config.saveFigInt[1])):
savePlot(self.players, self.curGame, Rsltdnn ,RsltStrm, Rsltbs , self.config, m)
result_srdqn = ', '.join(map("{:.2f}".format, Rsltdnn))
result_rand = ', '.join(map("{:.2f}".format, RsltRnd))
result_strm = ', '.join(map("{:.2f}".format, RsltStrm))
if self.ifOptimalSolExist:
result_bs = ', '.join(map("{:.2f}".format, Rsltbs))
print('output; {0:s}; Iter= {1:s}; SRDQN= [{2:s}]; sum = {3:2.4f}; Rand= [{4:s}]; sum = {5:2.4f}; Strm= [{6:s}]; sum = {7:2.4f}; BS= [{8:s}]; sum = {9:2.4f}'.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()) , str(str(self.curGame)+"-"+str(m)), result_srdqn , sum(Rsltdnn),
result_rand, sum(RsltRnd),
result_strm, sum(RsltStrm),
result_bs, sum(Rsltbs)))
self.resultTest += [[Rsltdnn,RsltRnd,RsltStrm,Rsltbs]]
else:
print('output; {0:s}; Iter= {1:s}; SRDQN= [{2:s}]; sum = {3:2.4f}; Rand= [{4:s}]; sum = {5:2.4f}; Strm= [{6:s}]; sum = {7:2.4f}'.format(strftime("%Y-%m-%d %H:%M:%S", gmtime()) ,
str(str(self.curGame)+"-"+str(m)), result_srdqn, sum(Rsltdnn),
result_rand, sum(RsltRnd),
result_strm, sum(RsltStrm)))
self.resultTest += [[Rsltdnn,RsltRnd,RsltStrm]]
return sum(Rsltdnn)
def tester(self,testType,plt, colori, labeli ,m):
# set computation type for test
for k in range(0,self.config.NoAgent):
self.players[k].compTypeTest = testType[k]
# run the episode to get the results.
result = self.playGame(self.demand,"test")
# add the results into the figure
if self.config.ifSaveFigure and (self.curGame in range(self.config.saveFigInt[0],self.config.saveFigInt[1])) and (testType[0] != "rnd"):
plt = plotting(plt,[np.array(self.players[i].hist) for i in range(0,self.config.NoAgent)],colori, labeli)
if self.config.ifsaveHistInterval and ((self.curGame == 0) or (self.curGame == 1) or (self.curGame == 2) or(self.curGame == 3) or ((self.curGame - 1) % self.config.saveHistInterval == 0)\
or ((self.curGame) % self.config.saveHistInterval == 0) or ((self.curGame) % self.config.saveHistInterval == 1) \
or ((self.curGame) % self.config.saveHistInterval == 2)) :
for k in range(0,self.config.NoAgent):
name = labeli + "-" + str(self.curGame) + "-" + "player" + "-" + str(k)+ "-" + str(m)
np.save(os.path.join(self.config.model_dir,name), np.array(self.players[k].hist2))
# save the figure of base stocks
# if self.config.ifSaveFigure and (self.curGame in range(self.config.saveFigInt[0],self.config.saveFigInt[1])):
# for k in range(self.config.NoAgent):
# if self.players[k].compTypeTest == 'dnn':
# plotBaseStock(self.players[k].srdqnBaseStock, 'b', 'base stock of agent '+ str(self.players[k].agentNum), self.curGame, self.config, m)
return result,plt
def update_OO(self):
for k in range(0,self.config.NoAgent):
if k < self.config.NoAgent - 1:
self.players[k].OO = sum(self.players[k+1].AO) + sum(self.players[k].AS)
else:
self.players[k].OO = sum(self.players[k].AS)