-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_utils.py
69 lines (57 loc) · 2.28 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import operator
from itertools import groupby
import pandas as pd
def load_true_matches(ds1, ds2, id_col='id'):
""" extract the true matches from the given datasets. Link on 'id_col'"""
dfa = pd.read_csv(ds1)
dfb = pd.read_csv(ds2)
a = pd.DataFrame({'ida': dfa.index,
'link': dfa[id_col]})
b = pd.DataFrame({'idb': dfb.index,
'link': dfb[id_col]})
dfj = a.merge(b, on='link', how='inner').drop(columns=['link'])
the_truth = set()
for row in dfj.itertuples(index=False):
the_truth.add((row[0], row[1]))
return the_truth
def greedy_solve(candidates_pairs):
"""greedily resolves the candidate pairs into matches, such that each entity has not more than one partner"""
sims, dset_is, rec_is = candidates_pairs
if len(dset_is) != len(rec_is):
raise ValueError('inconsistent shape of index arrays')
if len(dset_is) != 2:
raise NotImplementedError('only binary solving is supported')
dset_is0, dset_is1 = dset_is
rec_is0, rec_is1 = rec_is
if not (len(sims)
== len(dset_is0) == len(dset_is1)
== len(rec_is0) == len(rec_is1)):
raise ValueError('inconsistent shape of index arrays')
matches0 = set()
matches1 = set()
for rec_i0, sim, rec_i1 in zip(rec_is0, sims, rec_is1):
if rec_i0 not in matches0 and rec_i1 not in matches1:
matches0.add(rec_i0)
matches1.add(rec_i1)
yield sim, (rec_i0, rec_i1)
def compute_accuracies(candidates_pairs, true_matches):
"""greedily solve candidates_pairs, and compare to true matches."""
sims = []
tps = []
fps = []
fns = []
found_matches = set()
possible_matches = greedy_solve(candidates_pairs)
for sim, g in groupby(possible_matches, key=operator.itemgetter(0)):
new_pairs = map(operator.itemgetter(1), g)
found_matches.update(new_pairs)
tp = len(found_matches & true_matches)
fp = len(found_matches - true_matches)
fn = len(true_matches - found_matches)
sims.append(sim)
tps.append(tp)
fps.append(fp)
fns.append(fn)
precisions = [tp / (tp + fp) for tp, fp in zip(tps, fps)]
recalls = [tp / (tp + fn) for tp, fn in zip(tps, fns)]
return precisions, recalls