-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
35 lines (28 loc) · 1.38 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torchvision
import cv2
# using torch api to generate dataset
train_dataset = torchvision.datasets.MNIST(root='MNIST',
train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='MNIST',
train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
# generate dataloader
train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=100,
shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_dataset,
batch_size=100,
shuffle=True)
if __name__ == '__main__':
# draw first batch picture to test
train_img, train_label = next(iter(train_dataloader))
print(train_label) # 打印前100个测试集的标签
img = torchvision.utils.make_grid(train_img, nrow=10)
img = img.numpy().transpose(1, 2, 0) # img(CHW)->cv2(HWC)
cv2.imshow('Examples in MNIST', img)
cv2.waitKey()
# do not forget close cv2 window to end this program...