forked from richliao/textClassifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
textClassifierHATT.py
198 lines (155 loc) · 6.27 KB
/
textClassifierHATT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# author - Richard Liao
# Dec 26 2016
import numpy as np
import pandas as pd
import cPickle
from collections import defaultdict
import re
from bs4 import BeautifulSoup
import sys
import os
from keras.preprocessing.text import Tokenizer, text_to_word_sequence
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.layers import Embedding
from keras.layers import Dense, Input, Flatten
from keras.layers import Conv1D, MaxPooling1D, Embedding, Merge, Dropout, LSTM, GRU, Bidirectional, TimeDistributed
from keras.models import Model
from keras import backend as K
from keras.engine.topology import Layer, InputSpec
from keras import initializers
MAX_SENT_LENGTH = 100
MAX_SENTS = 15
MAX_NB_WORDS = 20000
EMBEDDING_DIM = 100
VALIDATION_SPLIT = 0.2
def clean_str(string):
"""
Tokenization/string cleaning for dataset
Every dataset is lower cased except
"""
string = re.sub(r"\\", "", string)
string = re.sub(r"\'", "", string)
string = re.sub(r"\"", "", string)
return string.strip().lower()
data_train = pd.read_csv('labeledTrainData.tsv', sep='\t')
print data_train.shape
from nltk import tokenize
reviews = []
labels = []
texts = []
for idx in range(data_train.review.shape[0]):
text = BeautifulSoup(data_train.review[idx])
text = clean_str(text.get_text().encode('ascii', 'ignore'))
texts.append(text)
sentences = tokenize.sent_tokenize(text)
reviews.append(sentences)
labels.append(data_train.sentiment[idx])
tokenizer = Tokenizer(nb_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts)
data = np.zeros((len(texts), MAX_SENTS, MAX_SENT_LENGTH), dtype='int32')
for i, sentences in enumerate(reviews):
for j, sent in enumerate(sentences):
if j < MAX_SENTS:
wordTokens = text_to_word_sequence(sent)
k = 0
for _, word in enumerate(wordTokens):
if k < MAX_SENT_LENGTH and tokenizer.word_index[word] < MAX_NB_WORDS:
data[i, j, k] = tokenizer.word_index[word]
k = k + 1
word_index = tokenizer.word_index
print('Total %s unique tokens.' % len(word_index))
labels = to_categorical(np.asarray(labels))
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
nb_validation_samples = int(VALIDATION_SPLIT * data.shape[0])
x_train = data[:-nb_validation_samples]
y_train = labels[:-nb_validation_samples]
x_val = data[-nb_validation_samples:]
y_val = labels[-nb_validation_samples:]
print('Number of positive and negative reviews in traing and validation set')
print y_train.sum(axis=0)
print y_val.sum(axis=0)
GLOVE_DIR = "."
embeddings_index = {}
f = open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt'))
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
print('Total %s word vectors.' % len(embeddings_index))
embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
# building Hierachical Attention network
embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
embedding_layer = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SENT_LENGTH,
trainable=True,
mask_zero=True)
class AttLayer(Layer):
def __init__(self, attention_dim):
self.init = initializers.get('normal')
self.supports_masking = True
self.attention_dim = attention_dim
super(AttLayer, self).__init__()
def build(self, input_shape):
assert len(input_shape) == 3
self.W = K.variable(self.init((input_shape[-1], self.attention_dim)), name='W')
self.b = K.variable(self.init((self.attention_dim, )), name='b')
self.u = K.variable(self.init((self.attention_dim, 1)), name='u')
self.trainable_weights = [self.W, self.b, self.u]
super(AttLayer, self).build(input_shape)
def compute_mask(self, inputs, mask=None):
return mask
def call(self, x, mask=None):
# size of x :[batch_size, sel_len, attention_dim]
# size of u :[batch_size, attention_dim]
# uit = tanh(xW+b)
uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b))
ait = K.dot(uit, self.u)
ait = K.squeeze(ait, -1)
ait = K.exp(ait)
if mask is not None:
# Cast the mask to floatX to avoid float64 upcasting in theano
ait *= K.cast(mask, K.floatx())
ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx())
ait = K.expand_dims(ait)
weighted_input = x * ait
output = K.sum(weighted_input, axis=1)
return output
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[-1])
sentence_input = Input(shape=(MAX_SENT_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sentence_input)
l_lstm = Bidirectional(GRU(100, return_sequences=True))(embedded_sequences)
l_att = AttLayer(100)(l_lstm)
sentEncoder = Model(sentence_input, l_att)
review_input = Input(shape=(MAX_SENTS, MAX_SENT_LENGTH), dtype='int32')
review_encoder = TimeDistributed(sentEncoder)(review_input)
l_lstm_sent = Bidirectional(GRU(100, return_sequences=True))(review_encoder)
l_att_sent = AttLayer(100)(l_lstm_sent)
preds = Dense(2, activation='softmax')(l_att_sent)
model = Model(review_input, preds)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])
print("model fitting - Hierachical attention network")
model.fit(x_train, y_train, validation_data=(x_val, y_val),
nb_epoch=10, batch_size=50)