-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_yield_cls.py
255 lines (210 loc) · 11.7 KB
/
finetune_yield_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from tqdm import tqdm
from models.model import MLP, YieldNet
from utils.build_utils import build_retro_iterator, build_model, load_checkpoint_downstream, set_random_seed
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
from datetime import datetime
import json
from utils.logging import init_logger, TensorboardLogger
from utils.loss_utils import focal_loss
from args_parse import args_parser
def train(args, encoder, decoder, optimizer, loader, criterion):
encoder.train()
decoder.train()
train_loss = []
for batch in tqdm(loader, desc="Iteration"):
src, tgt, rt, idx, reagents, _ = batch
src, tgt, rt, reagents = src.to(args.device), tgt.to(args.device), rt.to(args.device), reagents.to(args.device)
del batch
torch.cuda.empty_cache()
# get token representations
src_reps, tgt_reps = encoder.extract_reaction_fp(src, tgt, cond=reagents)
# reagents = decoder.linear_transform(reagents)
# reaction_fp = torch.cat([src_reps, tgt_reps], dim=-1) + reagents
# reaction_fp = torch.cat([src_reps, tgt_reps, torch.mul(src_reps, tgt_reps), src_reps - tgt_reps, reagents], dim=-1)
reaction_fp = torch.cat([src_reps, tgt_reps], dim=-1)
logits = decoder(reaction_fp)
optimizer.zero_grad()
loss = criterion(logits, rt.long()) # unnormalized logits(batch_size, num_class), rt with class indices
loss.backward()
optimizer.step()
train_loss.append(loss.item())
return np.mean(train_loss).round(4)
def evaluate(args, encoder, decoder, loader, criterion):
encoder.eval()
decoder.eval()
eval_loss = []
y_true = []
y_pred = []
for batch in tqdm(loader, desc="Iteration"):
src, tgt, rt, idx, reagents, _ = batch
src, tgt, rt, reagents = src.to(args.device), tgt.to(args.device), rt.to(args.device), reagents.to(args.device)
del batch
torch.cuda.empty_cache()
with torch.no_grad():
src_reps, tgt_reps = encoder.extract_reaction_fp(src, tgt, cond=reagents)
# reagents = decoder.linear_transform(reagents)
# reaction_fp = torch.cat([src_reps, tgt_reps], dim=-1) + reagents
# reaction_fp = torch.cat([src_reps, tgt_reps, reagents], dim=-1)
# reaction_fp = torch.cat([src_reps, tgt_reps, torch.mul(src_reps, tgt_reps), src_reps - tgt_reps, reagents], dim=-1)
reaction_fp = torch.cat([src_reps, tgt_reps], dim=-1)
logits = decoder(reaction_fp)
loss = criterion(logits, rt.long())
eval_loss.append(loss.item())
y_true.append(rt)
y_pred.append(torch.argmax(F.softmax(logits, dim=1), dim=1, keepdim=True))
#! augment (batch size for test is 1)
# y_true.append(rt[0].view(-1))
# y_pred.append(torch.argmax(F.softmax(torch.mean(logits, 0, keepdim=True), dim=1), dim=1, keepdim=True))
y_true = torch.cat(y_true).detach().cpu()
y_pred = torch.cat(y_pred).detach().cpu()
acc = accuracy_score(y_true, y_pred)
return np.mean(eval_loss).round(4), acc.round(4), y_true, y_pred
def main(args):
train_acc_all, val_acc_all, test_acc_all = [], [], []
for i in range(args.num_runs):
logger.info(f"----------Round {i + 1}, Seed {args.seed + i}----------")
# set random seed
set_random_seed(args.seed + i)
# build_iterator
if args.dataset_name == "reaxys_yield":
train_iter, val_iter, train_dataset = \
build_retro_iterator(args, mode="train", sample=False, augment=False)
args.data_file = "raw_test"
test_iter, _ = \
build_retro_iterator(args, mode="test", sample=False, augment=False)
else:
args.data_file = f"train_random_split_{i}"
#! change: augment=False-->True
train_iter, train_dataset = \
build_retro_iterator(args, mode="test_yield", sample=False, augment=False, shuffle=True)
args.data_file = f"test_random_split_{i}"
val_iter, _ = \
build_retro_iterator(args, mode="test_yield", sample=False, augment=False)
test_iter = val_iter
# load pre-trained encoder (mol_transformer)
encoder = build_model(args, train_dataset.src_itos, train_dataset.tgt_itos)
if args.checkpoint is not None:
encoder = load_checkpoint_downstream(args.checkpoint, encoder)
# build decoder and optimizer
args.size_layer = [2*encoder.d_model] + args.decoder_hidden_size + [args.num_class]
# args.size_layer = [2*encoder.d_model+512] + args.decoder_hidden_size + [args.num_class]
decoder = MLP(size_layer=args.size_layer, dropout=args.dropout).to(args.device)
model_param_group = [{"params": decoder.parameters()}]
if not args.fix_encoder:
if args.ffn_mode != "none" or args.attn_mode != "none":
for name, parameter in encoder.named_parameters():
if "adapter" in name or "cond" in name:
parameter.requires_grad = True
else:
parameter.requires_grad = False
model_param_group += [{"params": filter(lambda p: p.requires_grad, encoder.parameters()), "lr": args.encoder_lr}]
else:
model_param_group += [{"params": encoder.parameters(), "lr": args.encoder_lr}]
optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay)
# loss function
criterion = nn.CrossEntropyLoss()
# criterion = focal_loss(num_classes=4, device=args.device)
# train and validate
best_val_acc = -1.0
counter = 0.
for epoch in tqdm(range(args.epochs), desc="Epoch"):
train_loss = train(args, encoder, decoder, optimizer, train_iter, criterion)
val_loss, val_acc, _, _ = evaluate(args, encoder, decoder, val_iter, criterion)
logger.info(f"Epoch: {epoch + 1}, Train loss: {train_loss}, Valid loss: {val_loss}, Valid acc: {val_acc}")
test_loss, test_acc, _, _ = evaluate(args, encoder, decoder, test_iter, criterion)
logger.info(f"Epoch: {epoch + 1}, Test acc: {test_acc}")
# if early-stopping, break
if val_acc > best_val_acc:
best_val_acc = val_acc
checkpoint_path = os.path.join(args.exp_dir, f"model_round_{i + 1}.pt")
torch.save({'encoder': encoder.state_dict(), 'decoder': decoder.state_dict(), 'step': epoch + 1, 'optim': optimizer.state_dict()}, checkpoint_path)
counter = 0.
else:
counter += 1
if counter >= args.patience:
logger.info(f"----------Early-stopping at epoch {epoch + 1}----------")
break
# test and report classification result
#! load checkpoint
encoder = load_checkpoint_downstream(checkpoint_path, encoder, model_type="encoder")
decoder = load_checkpoint_downstream(checkpoint_path, decoder, model_type="decoder")
_, train_acc, _, _ = evaluate(args, encoder, decoder, train_iter, criterion)
_, val_acc, _, _ = evaluate(args, encoder, decoder, val_iter, criterion)
_, test_acc, y_true, y_pred = evaluate(args, encoder, decoder, test_iter, criterion)
logger.info(f"Round: {i + 1}, Train acc: {train_acc}, Valid acc: {val_acc}, Test acc: {test_acc}")
train_acc_all.append(train_acc)
val_acc_all.append(val_acc)
test_acc_all.append(test_acc)
df = pd.DataFrame()
df["y_true"] = list(y_true.numpy().reshape(-1))
df["y_pred"] = list(y_pred.numpy().reshape(-1))
df.to_csv(os.path.join(args.exp_dir, f"test_pred_{i}.csv"), index=False)
# report and save final result
train_acc_mean, train_acc_std = np.mean(train_acc_all).round(4), np.std(train_acc_all).round(4)
val_acc_mean, val_acc_std = np.mean(val_acc_all).round(4), np.std(val_acc_all).round(4)
test_acc_mean, test_acc_std = np.mean(test_acc_all).round(4), np.std(test_acc_all).round(4)
logger.info(f"train_result: acc: {train_acc_mean} ± {train_acc_std}")
logger.info(f"val_result: acc: {val_acc_mean} ± {val_acc_std}")
logger.info(f"test_result: acc: {test_acc_mean} ± {test_acc_std}")
def zeroshot(args):
test_acc_all = []
for i in range(args.num_runs):
logger.info(f"----------Round {i + 1}, Seed {args.seed + i}----------")
# set random se
set_random_seed(args.seed + i)
# args.data_dir = './data/buchward/az/classification_5class_0'
# args.data_file = f"test_random_split_{i}"
# args.num_class = 5
args.data_dir = './data/buchward/az/classification_4class'
args.data_file = f"processed"
args.num_class = 4
test_iter, dataset = \
build_retro_iterator(args, mode="test_yield", sample=False, augment=False)
# load pre-trained encoder (mol_transformer)
encoder = build_model(args, dataset.src_itos, dataset.tgt_itos)
# build decoder and optimizer
args.size_layer = [2*encoder.d_model] + args.decoder_hidden_size + [args.num_class] # [1024/512, 512, 256, 4]
# args.size_layer = [2*encoder.d_model] + [args.num_class]
decoder = MLP(size_layer=args.size_layer, dropout=args.dropout).to(args.device)
# decoder = Net(args.size_layer, dropout=args.dropout).to(args.device)
checkpoint_path = os.path.join(args.exp_dir, f"model_round_{i + 1}.pt")
encoder = load_checkpoint_downstream(checkpoint_path, encoder, model_type="encoder")
decoder = load_checkpoint_downstream(checkpoint_path, decoder, model_type="decoder")
# loss function
criterion = nn.CrossEntropyLoss()
_, test_acc, y_true, y_pred = evaluate(args, encoder, decoder, test_iter, criterion)
logger.info(f"Round: {i + 1}, Test acc: {test_acc}")
test_acc_all.append(test_acc)
df = pd.DataFrame()
df["y_true"] = list(y_true.numpy().reshape(-1))
df["y_pred"] = list(y_pred.numpy().reshape(-1))
df.to_csv(os.path.join(args.exp_dir, f"test_pred_{i}.csv"), index=False)
# report and save final result
test_acc_mean, test_acc_std = np.mean(test_acc_all).round(4), np.std(test_acc_all).round(4)
logger.info(f"test_result: acc: {test_acc_mean} ± {test_acc_std}")
if __name__ == "__main__":
args = args_parser()
args.data_dir = f'./data/{args.dataset_name}/classification_4class_react_additive'
args.exp_dir = f'./result/{args.dataset_name}/classification_4class_react_additive'
task = "supcon_hierar"
args.checkpoint = f"./result/uspto_1K_TPL_backward/final/{task}/model_pretrain_best_mAP.pt"
args.shared_vocab = True
dt = datetime.now()
args.exp_dir = os.path.join(args.exp_dir, "cond_adapter", '{}_{:02d}-{:02d}-{:02d}'.format(
dt.date(), dt.hour, dt.minute, dt.second))
os.makedirs(args.exp_dir, exist_ok=True)
logger = init_logger(os.path.join(args.exp_dir, "log.txt"))
with open(os.path.join(args.exp_dir, 'config.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
main(args)
# python finetune_yield_cls.py --num_runs 30 --dataset_name buchward/dy/yield_gnn --lr 1e-3 --encoder_lr 1e-4 --decoder_hidden_size 512 256 --dropout 0.2 --device cuda:x
# python finetune_yield_cls.py --num_runs 1 --decoder_hidden_size 512 256 --dropout 0.2 --lr 1e-3 --encoder_lr 1e-4 --ffn_mode adapter --attn_mode adapter --ffn_option sequential --device cuda:7 --dataset_name reaxys_yield