-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_yield_reg.py
304 lines (256 loc) · 14.9 KB
/
finetune_yield_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from tqdm import tqdm
from models.model import MLP, YieldNet
from utils.build_utils import build_retro_iterator, build_model, load_checkpoint_downstream, set_random_seed, load_checkpoint_downstream
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import numpy as np
import pandas as pd
from datetime import datetime
import json
from utils.logging import init_logger, TensorboardLogger
from utils.loss_utils import weighted_mse_loss, weighted_focal_mse_loss, BMCLoss
from args_parse import args_parser
def train(args, encoder, decoder, optimizer, loader, criterion):
encoder.train()
decoder.train()
train_loss = []
for batch in tqdm(loader, desc="Iteration"):
src, tgt, rt, ids, reagents, weights = batch
src, tgt, rt, reagents, weights = src.to(args.device), tgt.to(args.device), rt.to(args.device), reagents.to(args.device), weights.to(args.device)
del batch
torch.cuda.empty_cache()
# get token representations
src_reps, tgt_reps = encoder.extract_reaction_fp(src, tgt, cond=reagents)
# reaction_fp = torch.cat([src_reps, tgt_reps, reagents], dim=-1)
reaction_fp = torch.cat([src_reps, tgt_reps], dim=-1)
logits = decoder(reaction_fp)
optimizer.zero_grad()
if "weighted" in args.criterion:
loss = criterion(logits.view(-1), (rt/100).clamp(0, 1), weights)
else:
loss = criterion(logits.view(-1), (rt/100).clamp(0, 1))
loss.backward()
optimizer.step()
train_loss.append(loss.item())
return np.mean(train_loss).round(4)
def evaluate(args, encoder, decoder, loader, criterion):
encoder.eval()
decoder.eval()
eval_loss = []
y_true = []
y_pred = []
for batch in tqdm(loader, desc="Iteration"):
src, tgt, rt, ids, reagents, weights = batch
src, tgt, rt, reagents, weights = src.to(args.device), tgt.to(args.device), rt.to(args.device), reagents.to(args.device), weights.to(args.device)
del batch
torch.cuda.empty_cache()
with torch.no_grad():
src_reps, tgt_reps = encoder.extract_reaction_fp(src, tgt, cond=reagents)
reaction_fp = torch.cat([src_reps, tgt_reps], dim=-1)
logits = decoder(reaction_fp)
if "weighted" in args.criterion:
loss = criterion(logits.view(-1), (rt/100).clamp(0, 1), weights)
else:
loss = criterion(logits.view(-1), (rt/100).clamp(0, 1))
eval_loss.append(loss.item())
y_true.append(rt)
y_pred_batch = logits.squeeze()
if len(y_pred_batch.shape) == 0:
y_pred_batch = y_pred_batch.unsqueeze(0)
y_pred.append(y_pred_batch)
y_true = torch.cat(y_true).clip(0, 100).detach().cpu()
y_pred = (100 * torch.cat(y_pred)).clip(0, 100).detach().cpu()
r2 = r2_score(y_true, y_pred)
rmse = np.sqrt(mean_squared_error(y_true, y_pred))
mae = mean_absolute_error(y_true, y_pred)
return np.mean(eval_loss).round(4), r2.round(4), rmse.round(4), mae.round(4), y_true, y_pred
def main(args):
train_r2_all, val_r2_all, test_r2_all = [], [], []
train_rmse_all, val_rmse_all, test_rmse_all = [], [], []
train_mae_all, val_mae_all, test_mae_all = [], [], []
y_true_top10_mean, y_true_top10_std, y_pred_top10_mean, y_pred_top10_std = [], [], [], []
# loss function
if args.criterion == "mse":
criterion = nn.MSELoss(reduction="mean")
elif args.criterion == "weighted_mse":
criterion = weighted_mse_loss
elif args.criterion == "weighted_focal_mse" or args.criterion == "focal_mse":
criterion = weighted_focal_mse_loss
elif args.criterion == "bmc":
criterion = BMCLoss(1.)
#! pre-training
if args.do_pretrain:
args.data_dir = './data/buchward/dy'
args.data_file = "processed"
train_iter, train_dataset = \
build_retro_iterator(args, mode="test_yield", sample=False, augment=False, shuffle=True)
encoder = build_model(args, train_dataset.src_itos, train_dataset.tgt_itos)
args.size_layer = [2*encoder.d_model] + args.decoder_hidden_size + [args.num_class]
decoder = MLP(size_layer=args.size_layer, dropout=args.dropout).to(args.device)
if args.pretrain_checkpoint is not None:
encoder = load_checkpoint_downstream(args.pretrain_checkpoint, encoder)
model_param_group = [{"params": decoder.parameters()}]
if not args.fix_encoder:
if args.ffn_mode != "none" or args.attn_mode != "none":
for name, parameter in encoder.named_parameters():
if "adapter" in name or "cond" in name: # cond_attn & lin_cond
parameter.requires_grad = True
else:
parameter.requires_grad = False
model_param_group += [{"params": filter(lambda p: p.requires_grad, encoder.parameters()), "lr": args.encoder_lr}]
else:
model_param_group += [{"params": encoder.parameters(), "lr": args.encoder_lr}]
optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay)
if args.criterion == "bmc":
optimizer.add_param_group({'params': criterion.noise_sigma, 'lr': args.encoder_lr, 'name': 'noise_sigma'})
for epoch in tqdm(range(args.pretrain_epochs), desc="Epoch"):
train_loss = train(args, encoder, decoder, optimizer, train_iter, criterion)
args.yield_checkpoint = os.path.join(args.exp_dir, f"HTE_pretrain.pt")
torch.save({'encoder': encoder.state_dict(), 'decoder': decoder.state_dict(), 'step': epoch + 1, 'optim': optimizer.state_dict()}, args.yield_checkpoint)
args.data_dir = './data/buchward/az_test0.8/10_random_splits'
#! training
for i in range(0, args.num_runs):
logger.info(f"----------Round {i + 1}, Seed {args.seed + i}----------")
# set random seed
set_random_seed(args.seed + i)
# data_name = NAME_SPLIT[i][0]
# build_iterator
# args.data_file = f"train_{data_name}"
args.data_file = f"train_random_split_{i}"
train_iter, train_dataset = \
build_retro_iterator(args, mode="test_yield", sample=False, augment=False, shuffle=True)
# args.data_file = f"test_{data_name}"
args.data_file = f"test_random_split_{i}"
val_iter, _ = \
build_retro_iterator(args, mode="test_yield", sample=False, augment=False)
# y_mean = train_dataset.y_mean
# y_std = train_dataset.y_std
# load pre-trained encoder (mol_transformer)
encoder = build_model(args, train_dataset.src_itos, train_dataset.tgt_itos)
args.size_layer = [2*encoder.d_model] + args.decoder_hidden_size + [args.num_class]
# args.size_layer = [2*encoder.d_model] + [args.num_class]
#! w/o output_activation is better than w/ sigmoid
decoder = MLP(size_layer=args.size_layer, dropout=args.dropout).to(args.device)
# decoder = YieldNet(dims=[256,256,256]).to(args.device)
# ecfp_transform = MLP(size_layer=[1024, 512, 512], dropout=args.dropout).to(args.device)
if args.do_pretrain:
encoder = load_checkpoint_downstream(args.yield_checkpoint, encoder, model_type="encoder")
decoder = load_checkpoint_downstream(args.yield_checkpoint, decoder, model_type="decoder")
else:
if args.yield_checkpoint is not None: # transfer leanring between yield datasets
encoder = load_checkpoint_downstream(args.yield_checkpoint, encoder, model_type="encoder")
decoder = load_checkpoint_downstream(args.yield_checkpoint, decoder, model_type="decoder")
elif args.pretrain_checkpoint is not None:
encoder = load_checkpoint_downstream(args.pretrain_checkpoint, encoder)
model_param_group = [{"params": decoder.parameters()}]
if not args.fix_encoder:
if args.ffn_mode != "none" or args.attn_mode != "none":
for name, parameter in encoder.named_parameters():
if "adapter" in name or "cond" in name or "norm" in name: # cond_attn & lin_cond & layer_norm
parameter.requires_grad = True
else:
parameter.requires_grad = False
model_param_group += [{"params": filter(lambda p: p.requires_grad, encoder.parameters()), "lr": args.encoder_lr}]
else:
#! full fine-tuning
model_param_group += [{"params": encoder.parameters(), "lr": args.encoder_lr}]
optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay)
checkpoint_path = os.path.join(args.exp_dir, f"model_round_{i + 1}.pt")
# train and validate
if args.do_train:
best_val_r2 = -1.0
counter = 0.
for epoch in tqdm(range(args.epochs), desc="Epoch"):
train_loss = train(args, encoder, decoder, optimizer, train_iter, criterion)
val_loss, val_r2, val_rmse, val_mae, _, _ = evaluate(args, encoder, decoder, val_iter, criterion)
logger.info(f"Epoch: {epoch + 1}, Train loss: {train_loss}, Valid loss: {val_loss}, Valid r2: {val_r2}, Valid rmse: {val_rmse}, Valid mae: {val_mae}")
# if early-stopping, break
if val_r2 > best_val_r2:
best_val_r2 = val_r2
torch.save({'encoder': encoder.state_dict(), 'decoder': decoder.state_dict(), 'step': epoch + 1, 'optim': optimizer.state_dict()}, checkpoint_path)
counter = 0.
else:
counter += 1
if counter >= args.patience:
logger.info(f"----------Early-stopping at epoch {epoch + 1}----------")
break
# test and report classification result
encoder = load_checkpoint_downstream(checkpoint_path, encoder, model_type="encoder")
decoder = load_checkpoint_downstream(checkpoint_path, decoder, model_type="decoder")
_, train_r2, train_rmse, train_mae, _, _ = evaluate(args, encoder, decoder, train_iter, criterion)
_, val_r2, val_rmse, val_mae, y_true, y_pred = evaluate(args, encoder, decoder, val_iter, criterion)
# _, test_r2, test_rmse, test_mae = evaluate(args, encoder, decoder, test_iter, criterion)
logger.info(f"Round: {i + 1}, Train r2: {train_r2}, Train rmse: {train_rmse}, Train mae: {train_mae}, Valid r2: {val_r2}, Valid rmse: {val_rmse}, Valid mae: {val_mae}")
train_r2_all.append(train_r2)
train_rmse_all.append(train_rmse)
train_mae_all.append(train_mae)
val_r2_all.append(val_r2)
val_rmse_all.append(val_rmse)
val_mae_all.append(val_mae)
# test_r2_all.append(test_r2)
# test_rmse_all.append(test_rmse)
# test_mae_all.append(test_mae)
# report mean and std of top-10 reactions
y_true_top10 = torch.topk(y_true, 10)[0]
y_pred_top10 = y_true[torch.topk(y_pred, 10)[1]]
logger.info("Top-10 true highest yield: {:.2f} ± {:.2f}".format(y_true_top10.mean(), y_true_top10.std()))
logger.info("Top-10 predicted highest yield: {:.2f} ± {:.2f}".format(y_pred_top10.mean(), y_pred_top10.std()))
y_true_top10_mean.append(y_true_top10.mean().item())
y_true_top10_std.append(y_true_top10.std().item())
y_pred_top10_mean.append(y_pred_top10.mean().item())
y_pred_top10_std.append(y_pred_top10.std().item())
#! save predictions
df = pd.DataFrame()
df["y_true"] = list(y_true.numpy())
df["y_pred"] = list(y_pred.numpy())
df.to_csv(os.path.join(args.exp_dir, f"test_pred_{i}.csv"), index=False)
# report and save final result
train_r2_mean, train_r2_std, train_rmse_mean, train_rmse_std, train_mae_mean, train_mae_std = \
np.mean(train_r2_all).round(4), np.std(train_r2_all).round(4), np.mean(train_rmse_all).round(4), np.std(train_rmse_all).round(4), np.mean(train_mae_all).round(4), np.std(train_mae_all).round(4)
val_r2_mean, val_r2_std, val_rmse_mean, val_rmse_std, val_mae_mean, val_mae_std = \
np.mean(val_r2_all).round(4), np.std(val_r2_all).round(4), np.mean(val_rmse_all).round(4), np.std(val_rmse_all).round(4), np.mean(val_mae_all).round(4), np.std(val_mae_all).round(4)
# test_r2_mean, test_r2_std, test_rmse_mean, test_rmse_std, test_mae_mean, test_mae_std = \
# np.mean(test_r2_all).round(4), np.std(test_r2_all).round(4), np.mean(test_rmse_all).round(4), np.std(test_rmse_all).round(4), np.mean(test_mae_all).round(4), np.std(test_mae_all).round(4)
logger.info(f"train_result: r2: {train_r2_mean} ± {train_r2_std}, rmse: {train_rmse_mean} ± {train_rmse_std}, mae: {train_mae_mean} ± {train_mae_std}")
logger.info(f"val_result: r2: {val_r2_mean} ± {val_r2_std}, rmse: {val_rmse_mean} ± {val_rmse_std}, mae: {val_mae_mean} ± {val_mae_std}")
# logger.info(f"test_result: r2: {test_r2_mean} ± {test_r2_std}, rmse: {test_rmse_mean} ± {test_rmse_std}, mae: {test_mae_mean} ± {test_mae_std}")
result = pd.DataFrame()
result["test_r2"] = val_r2_all
result["test_mae"] = val_mae_all
result["y_true_top10_mean"] = y_true_top10_mean
result["y_true_top10_std"] = y_true_top10_std
result["y_pred_top10_mean"] = y_pred_top10_mean
result["y_pred_top10_std"] = y_pred_top10_std
result.to_csv(os.path.join(args.exp_dir, "result.csv"), index=False)
if __name__ == "__main__":
args = args_parser()
dt = datetime.now()
if args.fix_encoder:
setting = "fix_encoder"
else:
if args.ffn_mode != "none" or args.attn_mode != "none":
setting = "peft"
else:
setting = "full_finetuning"
if args.do_train:
args.exp_dir = os.path.join(args.exp_dir, "wo_scaler", setting, "cond_adapter", '{}_{:02d}-{:02d}-{:02d}'.format(
dt.date(), dt.hour, dt.minute, dt.second))
else:
# args.exp_dir = "./result/buchward/az/30_random_splits/wo_scaler/peft/mse/2024-04-22_18-02-59"
args.exp_dir = os.path.join(args.exp_dir, setting, "debug")
os.makedirs(args.exp_dir, exist_ok=True)
args.shared_vocab = True
task = "supcon_hierar"
args.pretrain_checkpoint = f"./checkpoint/{task}/model_pretrain_best_mAP.pt"
args.yield_checkpoint = None
logger = init_logger(os.path.join(args.exp_dir, "log.txt"))
if args.do_train:
with open(os.path.join(args.exp_dir, 'config.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
main(args)
# python finetune_az_yields_wo_scaler.py --device cuda:2 --dropout 0.2 --lr 1e-3 --encoder_lr 1e-4 --decoder_hidden_size 512 256 --num_runs 30