-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
65 lines (49 loc) · 1.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import dgl
import torch
from dgl.data import CiteseerGraphDataset, CoraGraphDataset, PubmedGraphDataset
from dgl.nn import LabelPropagation
def main():
# check cuda
device = (
f"cuda:{args.gpu}"
if torch.cuda.is_available() and args.gpu >= 0
else "cpu"
)
# load data
if args.dataset == "Cora":
dataset = CoraGraphDataset()
elif args.dataset == "Citeseer":
dataset = CiteseerGraphDataset()
elif args.dataset == "Pubmed":
dataset = PubmedGraphDataset()
else:
raise ValueError("Dataset {} is invalid.".format(args.dataset))
g = dataset[0]
g = dgl.add_self_loop(g)
labels = g.ndata.pop("label").to(device).long()
# load masks for train / test, valid is not used.
train_mask = g.ndata.pop("train_mask")
test_mask = g.ndata.pop("test_mask")
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze().to(device)
test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze().to(device)
g = g.to(device)
# label propagation
lp = LabelPropagation(args.num_layers, args.alpha)
logits = lp(g, labels, mask=train_idx)
test_acc = torch.sum(
logits[test_idx].argmax(dim=1) == labels[test_idx]
).item() / len(test_idx)
print("Test Acc {:.4f}".format(test_acc))
if __name__ == "__main__":
"""
Label Propagation Hyperparameters
"""
parser = argparse.ArgumentParser(description="LP")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--dataset", type=str, default="Cora")
parser.add_argument("--num-layers", type=int, default=10)
parser.add_argument("--alpha", type=float, default=0.5)
args = parser.parse_args()
print(args)
main()