-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
73 lines (54 loc) · 1.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
import os
import sys
import argparse
import pandas as pd
from keras.optimizers import SGD
from keras.callbacks import ReduceLROnPlateau
from sklearn.model_selection import train_test_split
from model import MSCNN
from data import generator
def main(argv):
parser = argparse.ArgumentParser()
# Required arguments.
parser.add_argument(
"--size",
default=224,
help="The image size of train sample.")
parser.add_argument(
"--batch",
default=2,
help="The number of train samples per batch.")
parser.add_argument(
"--epochs",
default=10,
help="The number of train iterations.")
args = parser.parse_args()
train(int(args.batch), int(args.epochs),int(args.size))
def train(batch, epochs, size):
"""Train the model.
Arguments:
batch: Integer, The number of train samples per batch.
epochs: Integer, The number of train iterations.
size: Integer, image size.
"""
if not os.path.exists('model'):
os.makedirs('model')
model = MSCNN((size, size, 3))
opt = SGD(lr=1e-5, momentum=0.9, decay=0.0005)
model.compile(optimizer=opt, loss='mse')
lr = ReduceLROnPlateau(monitor='loss', min_lr=1e-7)
indices = list(range(1500))
train, test = train_test_split(indices, test_size=0.25)
hist = model.fit_generator(
generator(train, batch, size),
validation_data=generator(test, batch, size),
steps_per_epoch=len(train) // batch,
validation_steps=len(test) // batch,
epochs=epochs,
callbacks=[lr])
model.save_weights('model\\final_weights.h5')
df = pd.DataFrame.from_dict(hist.history)
df.to_csv('model\\history.csv', index=False, encoding='utf-8')
if __name__ == '__main__':
main(sys.argv)