-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathtrain_illumination.py
87 lines (68 loc) · 2.67 KB
/
train_illumination.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import torch.nn as nn
from torch.autograd import Variable
import skimage
from skimage import io
import numpy as np
import argparse
from torchvision import transforms
import os
from logger import Logger
from train_loader_illumination import get_loader
from model_illNet import illNet
from vgg import VGG19
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR')
parser.add_argument('--epochs', type=int, default=2, metavar='N')
parser.add_argument('--batch_size', type=int, default=32, metavar='N')
parser.add_argument('--dataset_dir', type=str, default='./dataset', help='dataset path')
parser.add_argument("--savemodel_dir", type=str, default='./model.pkl', help='save model path')
args = parser.parse_args()
train_loader = get_loader(distorted_image_dir = '%s%s' % (args.dataset_dir, '/train/blur'),
corrected_image_dir = '%s%s' % (args.dataset_dir, '/train/rect'),
batch_size = args.batch_size)
model = illNet()
vggnet = VGG19()
vggnet.load_state_dict(torch.load('./vgg19.pkl'))
for param in vggnet.parameters():
param.requires_grad = False
criterion = nn.L1Loss()
vgg_loss = nn.L1Loss()
if torch.cuda.is_available():
model = model.cuda()
vggnet = vggnet.cuda()
criterion = criterion.cuda()
vgg_loss = vgg_loss.cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
lr = args.lr
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
step = 0
logger = Logger('./logs')
model.train()
for epoch in range(args.epochs):
for i, (blur, rect) in enumerate(train_loader):
if torch.cuda.is_available():
blur = blur.cuda()
rect = rect.cuda()
blur = Variable(blur)
rect = Variable(rect)
# Forward + Backward + Optimize
optimizer.zero_grad()
output = model(blur)
image_loss = criterion(output, rect)
A_relu44 = vggnet(rect, ['p5'], preprocess=False)[0]
B_relu44 = vggnet(output, ['p5'], preprocess=False)[0]
perception_loss = vgg_loss(A_relu44, B_relu44)*1e-5
loss = image_loss + perception_loss
loss.backward()
optimizer.step()
print("Epoch [%d], Iter [%d], Loss: %.4f, Loss: %.4f, Loss: %.4f" %
(epoch + 1, i + 1, loss.item(), image_loss.item(), perception_loss.item()))
#============ TensorBoard logging ============#
step = step + 1
#Log the scalar values
info = {'loss': loss.item()}
for tag, value in info.items():
logger.scalar_summary(tag, value, step)
torch.save(model.state_dict(), args.savemodel_dir)