-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathactor.py
148 lines (121 loc) · 5.58 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# ===========================
# Actor DNN
# ===========================
import tensorflow as tf
# Network Parameters - Hidden layers
n_hidden_1 = 256
n_hidden_2 = 256
n_hidden_3 = 256
def batch_norm(x, n_out, phase_train):
"""
Batch normalization on convolutional maps.
Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow
Args:
x: Tensor, 2D input maps
n_out: integer, depth of input maps
phase_train: boolean tf.Varialbe, true indicates training phase
scope: string, variable scope
Return:
normed: batch-normalized maps
"""
with tf.variable_scope('bn'):
beta = tf.Variable(tf.constant(0.0, shape=[n_out]),
name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[n_out]),
name='gamma', trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.03, shape=shape)
return tf.Variable(initial)
def conv1d(x, W, stride):
return tf.nn.conv1d(x, W, stride = stride, padding = "SAME")
class ActorNetwork(object):
"""
Input to the network is the state, output is the action
under a deterministic policy.
The output layer activation is a tanh to keep the action
between -2 and 2
"""
def __init__(self, sess, state_dim, action_dim, action_bound, learning_rate, tau):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.action_bound = action_bound
self.learning_rate = learning_rate
self.tau = tau
# Actor Network
self.inputs, self.out, self.scaled_out = self.create_actor_network()
self.network_params = tf.trainable_variables()
# Target Network
self.target_inputs, self.target_out, self.target_scaled_out = self.create_actor_network()
self.target_network_params = tf.trainable_variables()[len(self.network_params):]
# Op for periodically updating target network with online network weights
self.update_target_network_params = \
[self.target_network_params[i].assign(tf.multiply(self.network_params[i], self.tau) + \
tf.multiply(self.target_network_params[i], 1. - self.tau))
for i in range(len(self.target_network_params))]
# This gradient will be provided by the critic network
self.action_gradient = tf.placeholder(tf.float32, [None, self.a_dim])
# Combine the gradients here
self.actor_gradients = tf.gradients(self.scaled_out, self.network_params, -self.action_gradient)
# Optimization Op by applying gradient, variable pairs
self.optimize = tf.train.AdamOptimizer(self.learning_rate). \
apply_gradients(zip(self.actor_gradients, self.network_params))
self.num_trainable_vars = len(self.network_params) + len(self.target_network_params)
def create_actor_network(self):
inputs = tf.placeholder(tf.float32, [None, self.s_dim])
# FC1
w_fc1 = weight_variable([self.s_dim, n_hidden_1])
b_fc1 = bias_variable([n_hidden_1])
# FC2
w_fc2 = weight_variable([n_hidden_1, n_hidden_2])
b_fc2 = bias_variable([n_hidden_2])
# FC3
w_fc3 = weight_variable([n_hidden_2, n_hidden_3])
b_fc3 = bias_variable([n_hidden_3])
# Out 0
w_out_0 = weight_variable([n_hidden_3, self.a_dim/2])
b_out_0 = bias_variable([self.a_dim/2])
# Out 1
w_out_1 = weight_variable([n_hidden_3, self.a_dim/2])
b_out_1 = bias_variable([self.a_dim/2])
h_fc1 = tf.nn.relu(tf.matmul(inputs, w_fc1) + b_fc1)
h_fc2 = tf.nn.relu(tf.matmul(h_fc1, w_fc2) + b_fc2)
h_fc3 = tf.nn.relu(tf.matmul(h_fc2, w_fc3) + b_fc3)
# Run sigmoid on output 0 to get 0 to 1
out_0 = tf.nn.sigmoid(tf.matmul(h_fc3, w_out_0) + b_out_0)
# Run tanh on output 1 to get -1 to 1
out_1 = tf.nn.tanh(tf.matmul(h_fc3, w_out_1) + b_out_1)
out = tf.concat([out_0, out_1], axis=1)
scaled_out = tf.multiply(out, self.action_bound) # Scale output to -action_bound to action_bound
return inputs, out, scaled_out
def train(self, inputs, a_gradient):
self.sess.run(self.optimize, feed_dict={
self.inputs: inputs,
self.action_gradient: a_gradient,
})
def predict(self, inputs):
return self.sess.run(self.scaled_out, feed_dict={
self.inputs: inputs,
})
def predict_target(self, inputs):
return self.sess.run(self.target_scaled_out, feed_dict={
self.target_inputs: inputs,
})
def update_target_network(self):
self.sess.run(self.update_target_network_params)
def get_num_trainable_vars(self):
return self.num_trainable_vars