-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfinetune_mlm.py
223 lines (182 loc) · 9.82 KB
/
finetune_mlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import json
import os
from argparse import ArgumentParser
from functools import partial
from pathlib import Path
from shutil import rmtree
import numpy as np
import pandas as pd
import torch
import transformers.utils.logging
import wandb
from datasets import load_dataset, Dataset, DatasetDict
from transformers import RobertaTokenizerFast, AutoModelForSequenceClassification, DataCollatorWithPadding, Trainer, \
TrainingArguments, AlbertTokenizerFast, AutoModel
from transformers.trainer_utils import set_seed
from data import TASK_TO_CONFIG, TASK_TO_NAME
from field_collator import FieldDataCollatorWithPadding
from models import SpanClassificationModel, EntityChoiceModel
from src import LeanAlbertConfig, LeanAlbertForSequenceClassification, LeanAlbertForPreTraining
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
return super().default(obj)
MODEL_TO_HUB_NAME = {
'ruroberta-large': "sberbank-ai/ruRoberta-large",
}
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
N_EPOCHS = 40
LEARNING_RATE = 1e-5
MAX_LENGTH = 512
def main(task, model_name, checkpoint_path, data_dir, batch_size, grad_acc_steps, dropout, weight_decay, num_seeds):
if checkpoint_path is not None:
tokenizer = AlbertTokenizerFast.from_pretrained('tokenizer')
assert model_name is None
model_name = 'lean_albert'
else:
tokenizer = RobertaTokenizerFast.from_pretrained(MODEL_TO_HUB_NAME[model_name],
cache_dir=data_dir / 'transformers_cache')
if task == "russe":
data_collator = FieldDataCollatorWithPadding(tokenizer, fields_to_pad=(("e1_mask", 0, 0), ("e2_mask", 0, 0)),
pad_to_multiple_of=8)
elif task == "rucos":
data_collator = FieldDataCollatorWithPadding(tokenizer=tokenizer,
fields_to_pad=(
("entity_mask", 0, 1),
("labels", -1, None)
))
else:
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
if task == "rucos":
# we're using a custom dataset, because the HF hub version has no information about entity indices
train = Dataset.from_json(["RuCoS/train.jsonl"])
val = Dataset.from_json(["RuCoS/val.jsonl"])
test = Dataset.from_json(["RuCoS/test.jsonl"])
dataset = DatasetDict(train=train, validation=val, test=test)
elif task == "rucola":
train_df, in_domain_dev_df, out_of_domain_dev_df, test_df = map(
pd.read_csv, ("RuCoLA/in_domain_train.csv", "RuCoLA/in_domain_dev.csv", "RuCoLA/out_of_domain_dev.csv",
"RuCoLA/test.csv")
)
# concatenate datasets to get aggregate metrics
dev_df = pd.concat((in_domain_dev_df, out_of_domain_dev_df))
train, dev, test = map(Dataset.from_pandas, (train_df, dev_df, test_df))
dataset = DatasetDict(train=train, validation=dev, test=test)
else:
dataset = load_dataset("russian_super_glue", task)
config = TASK_TO_CONFIG[task](dataset)
processed_dataset = dataset.map(partial(config.process_data, tokenizer=tokenizer, max_length=MAX_LENGTH),
num_proc=32, keep_in_memory=True, batched=True)
if "labels" in processed_dataset["test"].column_names:
test_without_labels = processed_dataset['test'].remove_columns(['labels'])
else:
test_without_labels = processed_dataset["test"]
transformers.utils.logging.enable_progress_bar()
model_prefix = f"{model_name}_" \
f"{task}_" \
f"dr{dropout}_" \
f"wd{weight_decay}_" \
f"bs{batch_size * grad_acc_steps}"
dev_metrics_per_run = []
predictions_per_run = []
for seed in range(num_seeds):
set_seed(seed)
if checkpoint_path is not None:
model_config = LeanAlbertConfig.from_pretrained('config.json')
model_config.num_labels = config.num_classes
model_config.classifier_dropout_prob = dropout
if task in ("russe", "rucos"):
model = LeanAlbertForPreTraining(model_config)
else:
model = LeanAlbertForSequenceClassification(model_config)
model.resize_token_embeddings(len(tokenizer))
checkpoint = torch.load(checkpoint_path, map_location='cpu')['model']
incompat_keys = model.load_state_dict(checkpoint, strict=False)
print("missing", incompat_keys.missing_keys)
print("unexpected", incompat_keys.unexpected_keys)
if task in ("russe", "rucos"):
model = model.albert
else:
if task in ("russe", "rucos"):
model = AutoModel.from_pretrained(MODEL_TO_HUB_NAME[model_name],
attention_probs_dropout_prob=dropout,
hidden_dropout_prob=dropout,
cache_dir=data_dir / 'transformers_cache')
else:
model = AutoModelForSequenceClassification.from_pretrained(MODEL_TO_HUB_NAME[model_name],
num_labels=config.num_classes,
attention_probs_dropout_prob=dropout,
hidden_dropout_prob=dropout,
cache_dir=data_dir / 'transformers_cache')
if task == "russe":
model = SpanClassificationModel(model, num_labels=config.num_classes)
elif task == "rucos":
model = EntityChoiceModel(model)
run_base_dir = f"{model_prefix}_{seed}"
run = wandb.init(project='brbert', name=run_base_dir)
run.config.update({"task": task, "model": model_name, "checkpoint": str(checkpoint_path)})
training_args = TrainingArguments(
output_dir=data_dir / 'checkpoints' / run_base_dir, overwrite_output_dir=True,
evaluation_strategy='epoch', logging_strategy='epoch', logging_first_step=True,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size, gradient_accumulation_steps=grad_acc_steps,
optim="adamw_torch", learning_rate=LEARNING_RATE, weight_decay=weight_decay,
num_train_epochs=N_EPOCHS, warmup_ratio=0.1, save_strategy='epoch',
seed=seed, fp16=True, dataloader_num_workers=4, group_by_length=True,
report_to='wandb', run_name=run_base_dir, save_total_limit=1,
load_best_model_at_end=True, metric_for_best_model=config.best_metric
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=processed_dataset['train'],
eval_dataset=processed_dataset['validation'],
compute_metrics=partial(config.compute_metrics, split="validation",
processed_dataset=processed_dataset["validation"]),
tokenizer=tokenizer,
data_collator=data_collator,
)
train_result = trainer.train()
print(run_base_dir)
print('train', train_result.metrics)
dev_predictions = trainer.predict(test_dataset=processed_dataset['validation'])
print('dev', dev_predictions.metrics)
run.summary.update(dev_predictions.metrics)
wandb.finish()
dev_metrics_per_run.append(dev_predictions.metrics[f"test_{config.best_metric}"])
predictions = trainer.predict(test_dataset=test_without_labels)
predictions_per_run.append(predictions.predictions)
if task != "terra":
rmtree(data_dir / 'checkpoints' / run_base_dir)
best_run = np.argmax(dev_metrics_per_run)
best_predictions = predictions_per_run[best_run]
processed_predictions = config.process_predictions(best_predictions, split="test",
processed_dataset=processed_dataset["test"])
prefix_without_task = model_prefix.replace(f"{task}_", "")
os.makedirs(f"preds/{prefix_without_task}", exist_ok=True)
if task == "rucola":
result_df = pd.DataFrame.from_records(processed_predictions, index="id")
result_df.to_csv(f"preds/{prefix_without_task}/{TASK_TO_NAME[task]}.csv")
else:
with open(f"preds/{prefix_without_task}/{TASK_TO_NAME[task]}.jsonl", 'w+') as outf:
for prediction in processed_predictions:
print(json.dumps(prediction, ensure_ascii=True, cls=NumpyEncoder), file=outf)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("-t", '--task', choices=TASK_TO_CONFIG.keys())
parser.add_argument("-m", '--model-name', choices=MODEL_TO_HUB_NAME.keys())
parser.add_argument("-c", '--checkpoint', type=Path)
parser.add_argument("-d", "--data-dir", type=Path)
parser.add_argument("--batch-size", required=True, type=int)
parser.add_argument("--grad-acc-steps", required=True, type=int)
parser.add_argument("--dropout", required=True, type=float)
parser.add_argument("--weight-decay", required=True, type=float)
parser.add_argument("--num-seeds", required=True, type=int)
args = parser.parse_args()
main(args.task, args.model_name, args.checkpoint, args.data_dir, args.batch_size, args.grad_acc_steps,
args.dropout, args.weight_decay, args.num_seeds)