-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathecom-offers.py
229 lines (181 loc) · 8.47 KB
/
ecom-offers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Ecom Offers (Acquire Valued Shoppers by DMDave) preprocessign and splitting script
import gzip
import numpy as np
import polars as pl
import kaggle
from loguru import logger
import lib
from preprocessing.util import save_dataset
TMP_DATA_PATH = lib.PROJECT_DIR/'preprocessing/tmp/ecom-offers'
TMP_DATA_PATH.mkdir(exist_ok=True, parents=True)
def main():
kaggle.api.competition_download_files('acquire-valued-shoppers-challenge', path=TMP_DATA_PATH)
lib.unzip(TMP_DATA_PATH/'acquire-valued-shoppers-challenge.zip')
# ======================================================================================
# >>> Preprocessing <<<
# ======================================================================================
logger.info('Preprocessing ecom offers dataset')
data_offers = pl.read_csv(gzip.open(TMP_DATA_PATH/'offers.csv.gz').read())
data_train_history = pl.read_csv(gzip.open(TMP_DATA_PATH/'trainHistory.csv.gz').read()).with_columns(
pl.col('offerdate').str.strptime(pl.Date)
)
data_transactions = pl.read_csv(gzip.open(TMP_DATA_PATH/'transactions.csv.gz').read()).with_columns(
pl.col('date').str.strptime(pl.Date)
)
data_train_offer = (
data_train_history
.join(data_offers, on='offer')
.with_columns(pl.col('repeater').eq('t').cast(pl.Int32).alias('target'))
.drop('repeater')
)
data_transactions = (
data_transactions
.join(data_train_offer, on='id')
.with_columns((pl.col('offerdate') - pl.col('date')).dt.total_days().alias('date_diff'))
)
filters = {
'bought_company': pl.col('company').eq(pl.col('company_right')),
'bought_category': pl.col('category').eq(pl.col('category_right')),
'bought_brand': pl.col('brand').eq(pl.col('brand_right')),
}
date_diffs = [
pl.col('date_diff').lt(d).alias(f'{d}') for d in [1, 3, 7, 14, 21, 28, 60, 90, 120, 150, 180]
]
# Expressions used in aggregation of transaction histories
# first works, because data_train has one unique id for each offer, thus after join all data (like
# target, offervalue come from training data and have one uniuqe value)
exprs = [
pl.col('purchaseamount').cast(pl.Float64).sum().alias('total_spend'),
pl.col('target').first(),
pl.col('offervalue').first(),
pl.col('offerdate').first(),
pl.col('offerdate').first().dt.weekday().alias('day_of_week'),
pl.col('offerdate').first().dt.day().alias('day_of_month'),
pl.col('offerdate').first().dt.ordinal_day().alias('day_of_year'),
]
exprs += sum([
[
fv.sum().alias(f'has_{fn}'),
pl.col('purchasequantity').cast(pl.Float64).filter(fv).alias(f'has_{fn}_q').sum(),
pl.col('purchaseamount').cast(pl.Float64).filter(fv).sum().alias(f'has_{fn}_a')
]
for fn,fv in filters.items()
], [])
exprs += sum([
[
fv.and_(d).sum().alias(f'has_{fn}_{d.meta.output_name()}'),
pl.col('purchasequantity').cast(pl.Float64).filter(fv.and_(d)).alias(f'has_{fn}_q_{d.meta.output_name()}').sum(),
pl.col('purchaseamount').cast(pl.Float64).filter(fv.and_(d)).alias(f'has_{fn}_a_{d.meta.output_name()}').sum()
]
for d in date_diffs for fn,fv in filters.items()
], [])
data = (
data_transactions
.group_by('id')
.agg(*exprs)
.sort(by='offerdate')
)
X_num_data = data.select(
*[pl.col(c) for c in data.columns if c not in ['id', 'target', 'offerdate']]
).cast(pl.Float32)
X_bin_data = data.select(
*[pl.col(f'has_bought_{c}').eq(0).alias(f'never_bought_{c}') for c in ['company', 'category', 'brand']],
pl.col('has_bought_brand').ne(0).and_(pl.col('has_bought_category').ne(0)).and_(pl.col('has_bought_company').ne(0)).alias('has_bought_brand_company_category'),
pl.col('has_bought_brand').ne(0).and_(pl.col('has_bought_category').ne(0)).alias('has_bought_brand_category'),
pl.col('has_bought_brand').ne(0).and_(pl.col('has_bought_company').ne(0)).alias('has_bought_brand_company'),
).cast(pl.Float32)
X_meta_data = data.select(pl.col('offerdate').alias('timestamp')).cast(pl.Int64)
Y_data = data.select(pl.col('target')).cast(pl.Int64)
# ======================================================================================
# >>> Default task split <<<
# ======================================================================================
# Last 5 days of offers
default_test_idx = data.with_row_index().filter(
pl.col('offerdate').ge(pl.datetime(2013, 4, 25))
)['index'].to_numpy()
# Second to last 5 days of offers
default_val_idx = data.with_row_index().filter(
pl.col('offerdate').ge(pl.datetime(2013, 4, 20)) &
pl.col('offerdate').lt(pl.datetime(2013, 4, 25))
)['index'].to_numpy()
# The rest is train
default_train_idx = data.with_row_index().filter(
pl.col('offerdate').lt(pl.datetime(2013, 4, 20))
)['index'].to_numpy()
default_split = {
'train_idx': default_train_idx, 'val_idx': default_val_idx, 'test_idx': default_test_idx,
}
# ======================================================================================
# >>> Sliding window splits <<<
# ======================================================================================
# Create 3 windowed time splits
# We shift each window [val_size = 20_000] to the right
test_val_size = 20_000
num_splits = 3
# Calculate the remaining train samples
train_size = data.shape[0] - (num_splits - 1) * test_val_size - 2 * test_val_size
sliding_window_splits = [
{
'train_idx': np.arange(train_size),
'val_idx': np.arange(train_size, train_size + test_val_size),
'test_idx': np.arange(train_size + test_val_size, train_size + 2 * test_val_size),
}
]
for _ in range(1, num_splits):
sliding_window_splits.append(
{
k: v + test_val_size for k,v in sliding_window_splits[-1].items()
}
)
def time_range(df, split):
print('Start:', df[split[0].item()]['offerdate'].item())
print('End:', df[split[-1].item()]['offerdate'].item())
return df[split[-1].item()]['offerdate'].item() - df[split[0].item()]['offerdate'].item()
print('\n>>> Default Split')
print('\nTrain time info:')
print(time_range(data, default_split['train_idx']))
print('\nVal time info:')
print(time_range(data, default_split['val_idx']))
print('\nTest time info:')
print(time_range(data, default_split['test_idx']))
for s in sliding_window_splits:
print('\n>>> Sliding Window Split')
print('\nTrain time info:')
print(time_range(data, s['train_idx']))
print('\nVal time info:')
print(time_range(data, s['val_idx']))
print('\nTest time info:')
print(time_range(data, s['test_idx']))
# ======================================================================================
# >>> Random splits <<<
# ======================================================================================
# Random splits are created from the sliding_window splits by shuffling all the data in the
# respective window and respliting into same train validation and test dataset sizes
np.random.seed(0)
random_splits = []
for split in sliding_window_splits:
idxs = np.concatenate([v for v in split.values()])
np.random.shuffle(idxs)
random_splits.append({
'train_idx': idxs[:train_size],
'val_idx': idxs[train_size:train_size+test_val_size],
'test_idx': idxs[train_size+test_val_size:],
})
# ======================================================================================
# >>> Save data and splits <<<
# ======================================================================================
data_parts = {n.rsplit('_', maxsplit=1)[0]: v for n, v in locals().items() if n.endswith('_data')}
all_splits = (
{'default': default_split} |
{f'sliding-window-{i}': split for i, split in enumerate(sliding_window_splits)} |
{f'random-{i}': split for i, split in enumerate(random_splits)}
)
logger.info('Writing data to disk')
save_dataset(
name='ecom-offers',
task_type='binclass',
data=data_parts,
splits=all_splits,
)
if __name__ == "__main__":
main()