This repository has been archived by the owner on Nov 4, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
atari.py
220 lines (169 loc) · 9.17 KB
/
atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""a minimalistic experiment designed to test the framework"""
import gym
import numpy as np
import theano
import theano.tensor as T
import lasagne
from lasagne.layers import *
from lasagne.nonlinearities import *
from lasagne.regularization import regularize_network_params,l2
from agentnet import Agent
from agentnet.environment import SessionBatchEnvironment
from agentnet.learning import a2c
from tinyverse import Experiment, lazy
from prefetch_generator import background
def make_experiment(db):
"""
This is what's going to be created on "python tinyverse atari.py ..."
"""
return AtariA3C(db)
class AtariA3C(Experiment):
"""
A class that defines the reinforcement learning experiment.
This particular experiment implements a simple convolutional network with A3C algorithm.
It can than be sent playing/training/evaluating via
- python ./tinyverse atari.py play
- python ./tinyverse atari.py train -b 10
- python ./tinyverse atari.py eval -n 5
"""
def __init__(self,
db, #database instance (mandatory parameter)
sequence_length=25, # how many steps to make before updating weights
env_id="PongDeterministic-v0", #which game to play (uses gym.make)
):
"""a simple experiment setup that plays pong"""
self.env_id=env_id
super(AtariA3C, self).__init__(db, self.make_agent(), sequence_length=sequence_length)
def make_env(self):
"""spawn a new environment instance"""
env = gym.make(self.env_id)
env = PreprocessImage(env,64,64,grayscale=True) #preprocess image, all default parameters (see below)
return env
def make_agent(self,
observation_shape=(1, 64, 64), # same as env.observation_space.shape
n_actions = 6, # same as env.action_space.n
):
"""builds agent network"""
#observation
inp = InputLayer((None,)+observation_shape,)
#4-tick window over images
from agentnet.memory import WindowAugmentation
prev_wnd = InputLayer((None,4)+observation_shape)
new_wnd = WindowAugmentation(inp,prev_wnd)
#reshape to (channels, h,w). If you don't use grayscale, 4 should become 12.
wnd_reshape = reshape(new_wnd, (-1,4)+observation_shape[1:])
#network body
conv0 = Conv2DLayer(wnd_reshape,32,5,stride=2,nonlinearity=elu)
conv1 = Conv2DLayer(conv0,32,5,stride=2,nonlinearity=elu)
conv2 = Conv2DLayer(conv1,64,5,stride=1,nonlinearity=elu)
dense = DenseLayer(dropout(conv2,0.1),512,nonlinearity=tanh)
#actor head
logits_layer = DenseLayer(dense,n_actions,nonlinearity=None)
#^^^ store policy logits to regularize them later
policy_layer = NonlinearityLayer(logits_layer,T.nnet.softmax)
#critic head
V_layer = DenseLayer(dense,1,nonlinearity=None)
#sample actions proportionally to policy_layer
from agentnet.resolver import ProbabilisticResolver
action_layer = ProbabilisticResolver(policy_layer)
#get all weights (just like any lasagne network). new_out mentioned just in case.
self.weights = get_all_params([V_layer,policy_layer],trainable=True)
return Agent(observation_layers=inp,
policy_estimators=(logits_layer,V_layer),
agent_states={new_wnd:prev_wnd},
action_layers=action_layer)
def make_train_fun(self,agent,
sequence_length=25, # how many steps to make before updating weights
observation_shape=(1,64, 64), # same as env.observation_space.shape
reward_scale=1, #rewards are multiplied by this. May be useful if they are large.
gamma=0.99, #discount from TD
):
"""Compiles a function to train for one step"""
#make replay environment
observations = T.tensor(theano.config.floatX,broadcastable=(False,)*(2+len(observation_shape)),
name="observations[b,t,color,width,height]")
actions = T.imatrix("actions[b,t]")
rewards,is_alive = T.matrices("rewards[b,t]","is_alive[b,t]")
prev_memory = [l.input_var for l in agent.agent_states.values()]
replay = SessionBatchEnvironment(observations,
[observation_shape],
actions=actions,
rewards=rewards,
is_alive=is_alive)
#replay sessions
_, _, _, _, (logits_seq, V_seq) = agent.get_sessions(
replay,
session_length=sequence_length,
experience_replay=True,
initial_hidden=prev_memory,
unroll_scan=False,#speeds up compilation 10x, slows down training by 20% (still 4x faster than TF :P )
)
rng_updates = agent.get_automatic_updates() #updates of random states (will be passed to a function)
# compute pi(a|s) and log(pi(a|s)) manually [use logsoftmax]
# we can't guarantee that theano optimizes logsoftmax automatically since it's still in dev
logits_flat = logits_seq.reshape([-1,logits_seq.shape[-1]])
policy_seq = T.nnet.softmax(logits_flat).reshape(logits_seq.shape)
logpolicy_seq = T.nnet.logsoftmax(logits_flat).reshape(logits_seq.shape)
# get policy gradient
elwise_actor_loss,elwise_critic_loss = a2c.get_elementwise_objective(policy=logpolicy_seq,
treat_policy_as_logpolicy=True,
state_values=V_seq[:,:,0],
actions=replay.actions[0],
rewards=replay.rewards*reward_scale,
is_alive=replay.is_alive,
gamma_or_gammas=gamma,
n_steps=None,
return_separate=True)
# add losses with magic numbers
# (you can change them more or less harmlessly, this usually just makes learning faster/slower)
# also regularize to prioritize exploration
reg_logits = T.mean(logits_seq**2)
reg_entropy = T.mean(T.sum(policy_seq*logpolicy_seq,axis=-1))
loss = 0.1*elwise_actor_loss.mean() + 0.25*elwise_critic_loss.mean() + 1e-3*reg_entropy + 1e-3*reg_logits
# Compute weight updates, clip by norm
grads = T.grad(loss,self.weights)
grads = lasagne.updates.total_norm_constraint(grads,10)
updates = lasagne.updates.adam(grads, self.weights,1e-4)
# compile train function
inputs = [observations, actions, rewards, is_alive]+prev_memory
return theano.function(inputs,
updates=rng_updates+updates,
allow_input_downcast=True)
def train_step(self,observations,actions,rewards,is_alive,prev_memory,*args,**kwargs):
"""Train on given batch (just call train_fun)"""
self.train_fun(observations,actions,rewards,is_alive,*prev_memory)
#some optimizations
@lazy
def train_fun(self):
"""compiles train_fun when asked. Used to NOT waste time on that in the player process (~10-15s at the start)"""
print("Compiling train_fun on demand...")
train_fun = self.make_train_fun(self.agent, sequence_length=self.sequence_length)
print("Done!")
return train_fun
@background(max_prefetch=10)
def iterate_minibatches(self,*args,**kwargs):
"""makes minibatch iterator work in a separate thread (speedup ~20%). Also prints RPS via tqdm."""
from tqdm import tqdm
return tqdm(super(AtariA3C,self).iterate_minibatches(*args,**kwargs))
import cv2
from gym.core import ObservationWrapper
from gym.spaces.box import Box
class PreprocessImage(ObservationWrapper):
def __init__(self,env,height=64,width=64,grayscale=True,
crop=lambda img: img[34:34+160]):
"""A gym wrapper that reshapes, crops and scales image into the desired shapes"""
super(PreprocessImage, self).__init__(env)
self.img_size = (height,width)
self.grayscale = grayscale
self.crop=crop
n_colors = 1 if self.grayscale else 3
self.observation_space = Box(0.0, 1.0, [n_colors,height,width])
def _observation(self, img):
"""what happens to the observation"""
img = self.crop(img)
img = cv2.resize(img, self.img_size)
if self.grayscale:
img=img.mean(-1,keepdims=True)
img = np.transpose(img,(2,0,1)) #reshape from (h,w,colors) to (colors,h,w)
img = img.astype('float32')/255.
return img