-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathjly_sorting.hpp
315 lines (271 loc) · 6.11 KB
/
jly_sorting.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/********************************************************************
Sorting/Selection functions for the Go-ICP Algorithm
Last modified: Jan 27, 2015
"Go-ICP: Solving 3D Registration Efficiently and Globally Optimally"
Jiaolong Yang, Hongdong Li, Yunde Jia
International Conference on Computer Vision (ICCV), 2013
Copyright (C) 2013 Jiaolong Yang (BIT and ANU)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#ifndef JLY_SORING_HPP
#define JLY_SORING_HPP
#define INTRO_K 5
#define INSERTION_NUM 5
//sorting in ascending order
template <typename T>
inline size_t median_of_st_mid_en(T * data, size_t st, size_t en)
{
size_t mid = (st+en)/2;
if(data[st] < data[en])
{
if(data[mid] < data[st])//median is data[st]
return st;
else if(data[mid] < data[en]) //median is data[md]
return mid;
else //median is data[en]
return en;
}
else // data[en] <= data[st]
{
if(data[mid] < data[en])//median is data[en]
return en;
else if(data[mid] < data[st]) //median is data[md]
return mid;
else //median is data[st]
return st;
}
}
//median of 3 numbers
template <typename T>
inline size_t median_of_3(T * data, size_t st)
{
T* data_ = data + st;
if(data_[0] < data_[2])
{
if(data_[1] < data_[0])//median is data[0]
return st;
else if(data_[1] < data_[2]) //median is data[1]
return st + 1;
else //median is data[2]
return st + 2;
}
else // data[2] <= data[0]
{
if(data[1] < data[2])//median is data[2]
return st + 2;
else if(data[1] < data[0]) //median is data[1]
return st + 1;
else //median is data[0]
return st;
}
}
//median of 5 numbers with 6 comparisons
template <typename T>
inline size_t median_of_5(T * data, size_t st)
{
T* data_ = data + st;
T tmp;
if(data_[0] > data_[1])
{
tmp = data_[0];
data_[0] = data_[1];
data_[1] = tmp;
}
if(data_[2] > data_[3])
{
tmp = data_[2];
data_[2] = data_[3];
data_[3] = tmp;
}
if(data_[0] < data_[2])
{
tmp = data_[4];
data_[4] = data_[0];
if(tmp < data_[1])
data_[0] = tmp;
else
{
data_[0] = data_[1];
data_[1] = tmp;
}
}
else
{
tmp = data_[4];
data_[4] = data_[2];
if(tmp < data_[3])
data_[2] = tmp;
else
{
data_[2] = data_[3];
data_[3] = tmp;
}
}
if(data_[0] < data_[2])
{
if(data_[1] < data_[2])
return st + 1;
else
return st + 2;
}
else
{
if(data_[0] < data_[3])
return st;
else
return st + 3;
}
}
template <typename T>
size_t median_of_medians(T * data, size_t st, size_t en)
{
size_t l = en-st+1;
size_t numof5 = l / 5;
if(l % 5 != 0)
numof5 ++;
T tmp;
size_t subst = st, suben = st + 4;
size_t i, medind;
//fist (numof5 - 1) groups
for(i = 0; i < numof5 - 1; i++, subst += 5, suben += 5)
{
medind = median_of_5(data, subst);
tmp = data[st+i];
data[st+i] = data[medind];
data[medind] = tmp;
}
//last group
{
switch(en-subst+1)
{
case 3: // 3 elements
case 4: // 4 elements
medind = median_of_3(data, subst);
break;
case 5: // 5 elements
medind = median_of_5(data, subst);
break;
default: // 1 or 2 elements
medind = subst;
break;
}
tmp = data[st+i];
data[st+i] = data[medind];
data[medind] = tmp;
}
//median of medians
if(numof5 > 5)
return median_of_medians(data, st, st + numof5-1);
else
{
switch(numof5)
{
case 3: // 3 elements
case 4: // 4 elements
return median_of_3(data, st);
break;
case 5: // 5 elements
return median_of_5(data, st);
break;
default: // 1 or 2 elements
return st;
break;
}
}
}
template <typename T>
void insertion_sort(T * data, size_t st, size_t en)
{
T tmp;
size_t i, j;
for(i = st+1; i <= en; i++)
for(j = i; j > st && data[j-1] > data[j]; j--)
{
tmp = data[j-1];
data[j-1] = data[j];
data[j] = tmp;
}
}
// Sort the given array in ascending order
// Stop immediately after the array is splitted into k small numbers and n-k large numbers
template <typename T>
void intro_select(T * data, size_t st, size_t en, size_t k)
{
T pivot;
T tmp;
//for(; st < en && data[st] > 0; st++);
size_t l_pre = en-st+1;
size_t l;
size_t medind;
bool quickselect = true;
size_t i = 0;
while(1)
{
if(st >= en)
break;
if(en - st <= INSERTION_NUM)
{
insertion_sort(data, st, en);
return;
}
if(quickselect && i++ == INTRO_K)
{
// switch to 'median of medians' if INTRO_K partations of quickselect fail to half the size
l = en-st+1;
if(l*2 > l_pre)
quickselect = false;
l_pre = l;
i = 0;
}
if(quickselect)
//medind = st;
medind = median_of_st_mid_en(data, st, en);
else
medind = median_of_medians(data, st, en);
if(medind != st)
{
tmp = data[st];
data[st] = data[medind];
data[medind] = tmp;
}
size_t p = st;
size_t left = st+1;
size_t right = en;
pivot = data[p];
while(1)
{
while (left < right && pivot >= data[left])
++left;
while (left < right && pivot <= data[right])
--right;
if (left >= right)
break;
//swap left & right
tmp = data[left];
data[left] = data[right];
data[right] = tmp;
}
size_t s = left-1;
if(data[left] < pivot)
s = left;
//swap p & s
data[p] = data[s];
data[s] = pivot;
if(s < k)
st = s+1;
else if(s > k)
en = s-1;
else //s == k
break;
}
}
#endif