-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathVector_Bluestein.m
96 lines (85 loc) · 5.86 KB
/
Vector_Bluestein.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
%%%%%%Vector diffraction computation method using Bluestein method
%%%%%%Light: Science and Applications, DOI:10.1038/s41377-020-00362-z;
%%%%%%unit: um
function [Ex Ey Ez] = Vector_Bluestein(E,Min,polar,xstart,xend,ystart,yend,z0,Moutx,Mouty)
%%%%%% Definition of input variable:
%%%%%% E----electric field of the incident light beam
%%%%%% Min-----resolution of the input plane in transverse and longitudinal directions
%%%%%% polar----polarization
%%%%%% xstart,xend----computation range in transverse direction
%%%%%% ystart,yend----computation range in longitudinal direction
%%%%%% z0----position shift along the optical axis
%%%%%% Mxout,Myout----resolution of the output plane in transverse and longitudinal directions
%%%%%% Defination of output variable:
%%%%%% Ex Ey Ez----vector components in three orthogonal directions
global lamda k n1 NA fo
R=fo.*NA./n1;% Objective back aperture (radius)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Debye diffraction calculated using Blustein method
N=(Min-1)/2;
m=linspace(-Min/2,Min/2,Min); % array in X dimension
n=linspace(-Min/2,Min/2,Min); % array in Y dimension
[m n] = meshgrid(m,n); % convert to 2D mesh
th=asin(NA.*sqrt(m.^2 + n.^2)./(N.*n1)); % angle of convergance (theta)
thh=th;
th(thh>asin(NA./n1))=0; % remove parts outside numerical aperture
E(thh>asin(NA./n1))=0; % remove parts outside numerical aperture
phi = atan2 (n,m); % define phi azimuthal angle (0-2Pi)
phi(phi<0) = phi(phi<0)+2.*pi;
z=z0;
switch polar
case('x')
% % % % % % % X-polarization
Ex = E./sqrt(cos(th)).*(1+(cos(th)-1).*cos(phi).^2).*exp (i.*k.*n1.*z.*cos (th));
Ey = E./sqrt(cos(th)).*(cos (phi).*sin (phi).*(cos (th)-1)).*exp (i.*k.*n1.*z.*cos (th));
Ez = E./sqrt(cos(th)).*(cos (phi).*sin (th)).*exp (i.*k.*n1.*z.*cos (th));
%
case('y')
% % % % % % % Y-polarization
Ex = E./sqrt(cos(th)).*((cos(th)-1).*cos(phi).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
Ey = E./sqrt(cos(th)).*(1+(cos(th)-1).*sin(phi).^2).*exp (i.*k.*n1.*z.*cos (th));
Ez = E./sqrt(cos(th)).*(sin (phi).*sin (th)).*exp (i.*k.*n1.*z.*cos (th));
case('rc')
% % % % % % % Right circular
Ex = (1./sqrt(2)).*E./sqrt(cos(th)).*(1+(cos(th)-1).*cos(phi).^2+i.*(cos(th)-1).*cos(phi).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
Ey = (1./sqrt(2)).*E./sqrt(cos(th)).*((cos(th)-1).*cos(phi).*sin(phi)+i.*(1+(cos(th)-1).*sin(phi).^2)).*exp (i.*k.*n1.*z.*cos (th));
Ez = (1./sqrt(2)).*E./sqrt(cos(th)).*(sin(th).*cos(phi)+i.*sin(th).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
case('lc')
% % % % % % % Left circular
Ex = (1./sqrt(2)).*E./sqrt(cos(th)).*(i.*(1+(cos(th)-1).*cos(phi).^2)+(cos(th)-1).*cos(phi).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
Ey = (1./sqrt(2)).*E./sqrt(cos(th)).*(i.*(cos(th)-1).*cos(phi).*sin(phi)+1+(cos(th)-1).*sin(phi).^2).*exp (i.*k.*n1.*z.*cos (th));
Ez = (1./sqrt(2)).*E./sqrt(cos(th)).*(i.*sin(th).*cos(phi)+sin(th).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
case('ra')
% % % % % % Radical polarization
Ex = E./sqrt(cos(th)).*(cos(phi).*(1+(cos(th)-1).*cos(phi).^2)+sin(phi).*(cos(th)-1).*cos(phi).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
Ey = E./sqrt(cos(th)).*(cos(phi).*(cos(th)-1).*cos(phi).*sin(phi)+sin(phi).*(1+(cos(th)-1).*sin(phi).^2)).*exp (i.*k.*n1.*z.*cos (th));
Ez = E./sqrt(cos(th)).*(cos(phi).*sin(th).*cos(phi)+sin(phi).*sin(th).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
case('az')
% % % % % % % Azimuthal polarization
Ex = E./sqrt(cos(th)).*(-sin(phi).*(1+(cos(th)-1).*cos(phi).^2)+cos(phi).*(cos(th)-1).*cos(phi).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
Ey = E./sqrt(cos(th)).*(-sin(phi).*(cos(th)-1).*cos(phi).*sin(phi)+cos(phi).*(1+(cos(th)-1).*sin(phi).^2)).*exp (i.*k.*n1.*z.*cos (th));
Ez = E./sqrt(cos(th)).*(-sin(phi).*sin(th).*cos(phi)+cos(phi).*sin(th).*sin(phi)).*exp (i.*k.*n1.*z.*cos (th));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ex (real (thh)>asin (NA./n1))=0;
Ey (real (thh)>asin (NA./n1))=0;
Ez (real (thh)>asin (NA./n1))=0;
where=isnan (Ex);
Ex (where)=1; % set all Not A Number values to 1
where=isnan (Ey);
Ey (where)=1; % set all Not A Number values to 1
where=isnan (Ez);
Ez (where)=1; % set all Not A Number values to 1
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% using Bluestein method to replace FFT
fs = fo.*lamda./n1.*(Min-1)./(2.*R); % dimension of the imaging plane
Cystart =fs./2+ystart; % start position in y direction
Cyend =fs./2+yend; % end position in y direction
Cxstart = fs./2+xstart; % start position in x direction
Cxend = fs./2+xend; % end position in x direction
EHold = Bluestein_dft(Ex,Cystart,Cyend,fs,Mouty);
Ex = Bluestein_dft(EHold,Cxstart,Cxend,fs,Moutx);
EHold = Bluestein_dft(Ey,Cystart,Cyend,fs,Mouty);
Ey = Bluestein_dft(EHold,Cxstart,Cxend,fs,Moutx);
EHold = Bluestein_dft(Ez,Cystart,Cyend,fs,Mouty);
Ez = Bluestein_dft(EHold,Cxstart,Cxend,fs,Moutx);
clear EHold;
end