-
Notifications
You must be signed in to change notification settings - Fork 42
/
A3C_control.py
337 lines (294 loc) · 14.8 KB
/
A3C_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/python
# -*- coding: utf-8 -*-
# author: yao62995 <[email protected]>
import re
import signal
import threading
import gym
import scipy.signal
from tensorflow.RNNs.rnn_cell import BasicLSTMCell
from common import *
tf.app.flags.DEFINE_string("game", "Breakout-v0", "gym environment name")
tf.app.flags.DEFINE_string("train_dir", "./models/experiment0/", "gym environment name")
tf.app.flags.DEFINE_integer("gpu", 0, "gpu id")
tf.app.flags.DEFINE_integer("t_max", 32, "episode max time step")
tf.app.flags.DEFINE_integer("t_train", 1e4, "train max time step")
tf.app.flags.DEFINE_integer("t_test", 1e4, "test max time step")
tf.app.flags.DEFINE_integer("jobs", 8, "parallel running thread number")
tf.app.flags.DEFINE_float("learn_rate", 5e-4, "param of smooth")
tf.app.flags.DEFINE_integer("grad_clip", 40.0, "gradient clipping cut-off")
tf.app.flags.DEFINE_float("eps", 1e-8, "param of smooth")
tf.app.flags.DEFINE_float("entropy_beta", 1e-4, "param of policy entropy weight")
tf.app.flags.DEFINE_float("gamma", 0.95, "discounted ratio")
tf.app.flags.DEFINE_float("train_step", 0, "train step. unchanged")
flags = tf.app.flags.FLAGS
class ControlEnv(object):
def __init__(self, env):
self.env = env
self.frame_skip = flags.frame_skip
self.frame_seq = flags.frame_seq
# local variables
self.state_dim = self.env.observation_space.shape[0]
self.state = np.zeros(self.state_dim, dtype=np.float32)
@property
def state_shape(self):
return self.env.observation_space.shape[0] * self.frame_seq
@property
def action_dim(self):
return self.env.action_space.n
def reset_env(self):
obs = self.env.reset()
self.state[:] = 0
self.state[-self.state_dim] = obs
return self.state
def forward_action(self, action):
obs, reward, done = None, None, None
for _ in xrange(self.frame_skip):
obs, reward, done, _ = self.env.step(action)
if done:
break
self.state = np.append(self.state[self.state_dim:], obs)
return self.state, reward, done
class A3CNet(object):
"""
1. In continuous control, policy network and value network do not share any parameters.
2. In continuous control, output of actor network is normal distribution.
"""
def __init__(self, state_dim, action_dim, scope):
with tf.device("/gpu:%d" % flags.gpu):
# placeholder
with tf.variable_scope("%s_holder" % scope):
self.state = tf.placeholder(tf.float32, shape=[None, state_dim], name="state") # (None, 84, 84, 4)
self.action = tf.placeholder(tf.float32, shape=[None, action_dim], name="action") # (None, actions)
self.target_q = tf.placeholder(tf.float32, shape=[None])
# policy parts
with tf.variable_scope("%s_policy" % scope):
pi_fc_1, self.pi_w1, self.pi_b1 = full_connect(self.state, (512, 256), "pi_fc1", with_param=True)
pi_fc_2, self.pi_w2, self.pi_b2 = full_connect(pi_fc_1, (256, 256), "pi_fc2", with_param=True)
pi_fc_3, self.pi_w3, self.pi_b3 = full_connect(pi_fc_2, (256, action_dim), "pi_fc3", activate=None,
with_param=True)
self.policy_out = NetTools.batch_normalized(pi_fc_3, name="pi_out")
# value parts
with tf.variable_scope("%s_value" % scope):
v_fc_1, self.v_w1, self.v_b1 = full_connect(self.state, (512, 256), "v_fc1", with_param=True)
v_fc_2, self.v_w2, self.v_b2 = full_connect(v_fc_1, (256, 256), "v_fc2", with_param=True)
v_fc_3, self.v_w3, self.v_b3 = full_connect(v_fc_2, (256, 1), "v_fc3", activate=None, with_param=True)
self.value_out = tf.reshape(v_fc_3, [-1], name="v_out")
# loss values
with tf.op_scope([self.policy_out, self.value_out], "%s_loss" % scope):
self.entropy = - (tf.log(2 * pi_fc_3 * self.policy_out + flags.eps) + 1) / 2
time_diff = self.target_q - self.value_out
self.value_loss = tf.reduce_sum(tf.square(time_diff))
self.total_loss = self.value_loss + self.entropy * flags.entropy_beta
def get_policy(self, sess, state):
return sess.run(self.policy_out, feed_dict={self.state: [state]})[0]
def get_value(self, sess, state):
return sess.run(self.value_out, feed_dict={self.state: [state]})[0]
def get_vars(self):
return [self.pi_w1, self.pi_b1, self.pi_w2, self.pi_b2, self.pi_w3, self.pi_b3,
self.v_w1, self.v_b1, self.v_w2, self.v_b2, self.v_w3, self.v_b3]
class A3CSingleThread(object):
def __init__(self, thread_id, master):
self.thread_id = thread_id
self.env = ControlEnv(gym.make(flags.game))
self.master = master
# local network
self.local_net = A3CNet(self.env.state_shape, self.env.action_dim, scope="local_net_%d" % thread_id)
# sync network
self.sync = self.sync_network(master.shared_net)
# accumulate gradients
self.accum_grads = self.create_accumulate_gradients()
self.do_accum_grads_ops = self.do_accumulate_gradients()
self.reset_accum_grads_ops = self.reset_accumulate_gradients()
# collect summaries for debugging
summaries = list()
summaries.append(tf.scalar_summary("entropy_%d" % self.thread_id, self.local_net.entropy))
summaries.append(tf.scalar_summary("value_loss_%d" % self.thread_id, self.local_net.value_loss))
summaries.append(tf.scalar_summary("total_loss_%d" % self.thread_id, self.local_net.total_loss))
# apply accumulated gradients
with tf.device("/gpu:%d" % flags.gpu):
clip_accum_grads = [tf.clip_by_value(grad, -flags.grad_clip, flags.grad_clip) for grad in self.accum_grads]
self.apply_gradients = master.shared_opt.apply_gradients(
zip(clip_accum_grads, master.shared_net.get_vars()))
self.summary_op = tf.merge_summary(summaries)
def sync_network(self, source_net):
sync_ops = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([], name="sync_ops_%d" % self.thread_id):
for (target_var, source_var) in zip(source_net.get_vars(), self.local_net.get_vars()):
ops = tf.assign(target_var, source_var)
sync_ops.append(ops)
return tf.group(*sync_ops, name="sync_group_%d" % self.thread_id)
def create_accumulate_gradients(self):
accum_grads = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([self.local_net], name="create_accum_%d" % self.thread_id):
for var in self.local_net.get_vars():
zero = tf.zeros(var.get_shape().as_list(), dtype=var.dtype)
name = var.name.replace(":", "_") + "_accum_grad"
accum_grad = tf.Variable(zero, name=name, trainable=False)
accum_grads.append(accum_grad.ref())
return accum_grads
def do_accumulate_gradients(self):
net = self.local_net
accum_grad_ops = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([net], name="grad_ops_%d" % self.thread_id):
var_refs = [v.ref() for v in net.get_vars()]
grads = tf.gradients(net.total_loss, var_refs, gate_gradients=False,
aggregation_method=None,
colocate_gradients_with_ops=False)
with tf.op_scope([], name="accum_ops_%d" % self.thread_id):
for (grad, var, accum_grad) in zip(grads, net.get_vars(), self.accum_grads):
name = var.name.replace(":", "_") + "_accum_grad_ops"
accum_ops = tf.assign_add(accum_grad, grad, name=name)
accum_grad_ops.append(accum_ops)
return tf.group(*accum_grad_ops, name="accum_group_%d" % self.thread_id)
def reset_accumulate_gradients(self):
net = self.local_net
reset_grad_ops = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([net], name="reset_grad_ops_%d" % self.thread_id):
for (var, accum_grad) in zip(net.get_vars(), self.accum_grads):
zero = tf.zeros(var.get_shape().as_list(), dtype=var.dtype)
name = var.name.replace(":", "_") + "_reset_grad_ops"
reset_ops = tf.assign(accum_grad, zero, name=name)
reset_grad_ops.append(reset_ops)
return tf.group(*reset_grad_ops, name="reset_accum_group_%d" % self.thread_id)
def forward_explore(self, train_step):
terminal = False
t_start = train_step
rollout_path = {"state": [], "action": [], "rewards": [], "done": []}
while not terminal and (train_step - t_start <= flags.t_max):
action = self.local_net.get_policy(self.master.sess, self.env.state)
_, reward, terminal = self.env.forward_action(action)
train_step += 1
rollout_path["state"].append(self.env.state)
one_hot_action = np.zeros(self.env.action_dim)
one_hot_action[action] = 1
rollout_path["action"].append(one_hot_action)
rollout_path["rewards"].append(reward)
rollout_path["done"].append(terminal)
return train_step, rollout_path
def discount(self, x):
return scipy.signal.lfilter([1], [1, -flags.gamma], x[::-1], axis=0)[::-1]
def train_phase(self):
sess = self.master.sess
self.env.reset_env()
loop = 0
while flags.train_step <= flags.t_train:
train_step = 0
loop += 1
# reset gradients
sess.run(self.reset_accum_grads_ops)
# sync variables
sess.run(self.sync)
# forward explore
train_step, rollout_path = self.forward_explore(train_step)
# rollout for discounted R values
if rollout_path["done"][-1]:
rollout_path["rewards"][-1] = 0
self.env.reset_env()
else:
rollout_path["rewards"][-1] = self.local_net.get_value(sess, rollout_path["state"][-1])
rollout_path["returns"] = self.discount(rollout_path["rewards"])
# accumulate gradients
lc_net = self.local_net
fetches = [self.do_accum_grads_ops, self.master.global_step]
if loop % 5 == 0:
fetches.append(self.summary_op)
res = sess.run(fetches, feed_dict={lc_net.state: rollout_path["state"],
lc_net.action: rollout_path["action"],
lc_net.target_q: rollout_path["returns"]})
if loop % 5 == 0:
global_step, summary_str = res[1], res[2]
self.master.summary_writer.add_summary(summary_str, global_step=global_step)
# async update grads to global network
sess.run(self.apply_gradients)
flags.train_step += train_step
def test_phase(self, max_step=1e3):
rewards = []
test_step = 0
while test_step <= flags.t_test:
terminal = False
self.env.reset_env()
episode_reward = 0
t_start = test_step
while not terminal and (test_step - t_start) < max_step:
pi_probs = self.local_net.get_policy(self.master.sess, self.env.state)
action = self.weighted_choose_action(pi_probs)
_, reward, terminal = self.env.forward_action(action)
test_step += 1
episode_reward += reward
rewards.append(episode_reward)
avg_reward = np.mean(rewards)
logger.info("episode: %d, avg_reward: %.4f" % (len(rewards), avg_reward))
class A3CAtari(object):
def __init__(self):
self.env = ControlEnv(gym.make(flags.game))
# shared network
self.shared_net = A3CNet(self.env.state_shape, self.env.action_dim, scope="global_net")
# shared optimizer
self.shared_opt, self.global_step, self.summary_writer = self.shared_optimizer()
# local training threads
self.jobs = []
for thread_id in xrange(flags.jobs):
job = A3CSingleThread(thread_id, self)
self.jobs.append(job)
# session
self.sess = tf.Session(config=tf.ConfigProto(log_device_placement=False,
allow_soft_placement=True))
self.sess.run(tf.initialize_all_variables())
# saver
self.saver = tf.train.Saver(var_list=self.shared_net.get_vars(), max_to_keep=3)
restore_model(self.sess, flags.train_dir, self.saver)
self.global_time_step = 0
self.phase_id = 0
def shared_optimizer(self):
with tf.device("/gpu:%d" % flags.gpu):
# optimizer
optimizer = tf.train.RMSPropOptimizer(flags.learn_rate, name="global_optimizer")
global_step = tf.get_variable("global_step", [], initializer=tf.constant_initializer(0), trainable=False)
summary_writer = tf.train.SummaryWriter(flags.train_dir, graph_def=self.graph)
return optimizer, global_step, summary_writer
def _train(self, thread_idx):
while True:
# train phase
self.jobs[thread_idx].train_phase()
# test phase
if flags.train_step > flags.t_train:
if thread_idx == 0:
self.phase_id += 1
self.global_time_step += flags.train_step
job = self.jobs[0]
job.test_phase()
if self.phase_id % 5 == 0:
save_model(self.sess, flags.train_dir, self.saver, "a3c_model",
global_step=self.global_time_step)
flags.train_step = 0
else:
time.sleep(1)
def signal_handler(self):
# print "saving model"
# save_model(self.sess, flags.train_dir, self.saver, "a3c_model", global_step=self.global_time_step)
sys.exit(-1)
def train(self):
flags.train_step = 0
threads = [threading.Thread(target=self._train, args=(i,)) for i in xrange(flags.jobs)]
signal.signal(signal.SIGINT, self.signal_handler)
for thread in threads:
thread.start()
thread.join()
def main(_):
# mkdir
if not os.path.isdir(flags.train_dir):
os.makedirs(flags.train_dir)
# remove old tfevents files
for f in os.listdir(flags.train_dir):
if re.search(".*tfevents.*", f):
os.remove(os.path.join(flags.train_dir, f))
# model
model = A3CAtari()
model.train()
if __name__ == "__main__":
tf.app.run()